Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Effects of zooplankton selectivity on phytoplankton in an ecosystem affected by free-viruses and environmental toxins

1 Department of Mathematics, University of Kalyani, Kalyani - 741235, India
2 Science and Mathematics Faculty, Arizona State University, Mesa, AZ 85212, USA

Special Issues: Mathematical Modeling to Solve the Problems in Life Sciences

In the present study, we investigate the selective feeding of zooplankton on phytoplankton infected by free-viruses in the presence of environmental toxins in the marine ecosystem. The environmental toxins assume to decrease the growth rate of susceptible phytoplankton, and increase the death rate of infected phytoplankton and zooplankton. Global sensitivity analysis identifies important parameters of the system having crucial impact on the aquatic health. The coexistence equilibrium of the system stabilizes on increasing the parameters related to inhibition of phytoplankton growth due to environmental toxins and the force of infection, and destabilizes on increasing the carrying capacity of susceptible phytoplankton and preference of zooplankton on infected phytoplankton. The chance of extinction of free-viruses increases on increasing the preference of zooplankton on infected phytoplankton or decreasing the force of infection. Moreover, if the input rate of environmental toxins is high, then the system becomes zooplankton-free for higher values of force of infection. On increasing the values of preference of zooplankton on infected phytoplankton, the system exhibits transition from stable coexistence to oscillations around coexistence equilibrium to oscillations around disease-free equilibrium. We observe that the presence of free-viruses and environmental toxins in the system drive zooplankton population to very low equilibrium values but the ecological balance of the aquatic food web can be maintained by modulating the decay (depletion) rate of free-viruses (environmental toxins).
  Article Metrics

Keywords mathematical model; plankton dynamics; free-viruses; environmental toxins; Hopf-bifurcation; global sensitivity

Citation: Saswati Biswas, Pankaj Kumar Tiwari, Yun Kang, Samares Pal. Effects of zooplankton selectivity on phytoplankton in an ecosystem affected by free-viruses and environmental toxins. Mathematical Biosciences and Engineering, 2020, 17(2): 1272-1317. doi: 10.3934/mbe.2020065


  • 1. R. M. Anderson and R. M. May, The invasion, persistence, and spread of infectious diseases within animal and plant communities, Philos. Trans. R. Soc. Lond. B, 314 (1986), 533-570.
  • 2. J. Chattopadhyay and N. Bairagi, Pelicans at risk in Salton Sea - an eco-epidemiological model, Ecol. Model., 136 (2001), 103-112.
  • 3. Y. Xiao and L. Chen, Modelling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.
  • 4. E. Venturino, Epidemics in predator-prey models: Disease in the predators, IMA J. Math. Appl. Med. Biol., 19 (2002), 185-205.
  • 5. K. Hadeler and H.I. Freedman, Predator-prey population with parasite infection, J. Math. Biol., 27 (1989), 609-631.
  • 6. S. Samanta, R. Dhar, J. Pal, et al., Effect of enrichment on plankton dynamics where phytoplankton can be infected from free viruses, Nonlinear Studies, 20 (2013), 223-236.
  • 7. K. D. Lafferty and A. K. Morris, Altered behaviour of parasitized killfish increases susceptibility to predation by bird final hosts, Ecology, 77 (1996), 1390-1397.
  • 8. W. R. DeMott, Optimal foraging theory as a predictor of chemically mediated food selection by suspension-feeding copepods, Limnol. Oceanogr., 34 (1989), 140-154.
  • 9. M. A. Leibold, Biodiversity and nutrient enrichment in pond plankton communities, Evol. Ecol. Res., 1 (1999), 73-95.
  • 10. J. L. Brooks and S. I. Dodson, Predation, body size, and composition of plankton, Science, 150 (1965), 28-35.
  • 11. A. Mitra, C. Castellanib, W. C. Gentleman, et al., Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link, Prog. Oceanogr., 129 (2014), 176-199.
  • 12. M. D. Troch, M. Grego, V. A. Chepurnov, et al., Food patch size, food concentration and grazing efficiency of the harpacticoid Paramphiascella fulvofasciata (Crustacea, Copepoda), J. Exp. Mar. Biol. Ecol., 343 (2007), 210-216.
  • 13. W. R. DeMott, Discrimination between algae and artificial particles by freshwater and marine copepods, Limnol. Oceanogr., 33 (1988), 397-408.
  • 14. J. Pal, S. Bhattacharya and J. Chattopadhyay, Does predator go for size selection or preferential toxic-nontoxic species under limited resource?, OJBS, 10 (2010), 11-16.
  • 15. N. Aberle, H. Hillebrand, J. Grey, et al., Selectivity and competitive interactions between two benthic invertebrate grazers (Asellus aquaticus and Potamopyrgus antipodarum): An experimental study using 13C-and 15N-labelled diatoms, Freshwater Biol., 50 (2005), 369-379.
  • 16. M. G. Danielsdottir, M. T. Brett, G. B. Arhonditsis, Phytoplankton food quality control of planktonic food web processes, Hydrobiologia, 589 (2007), 29-41.
  • 17. M. Huntley, P. Sykes, S. Rohan, et al., Chemically-mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: mechanism, occurrence and significance, Mar. Ecol. Prog. Ser., 28 (1986), 105-120.    
  • 18. R. S. Fulton III and H.W. Paerl, Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms, Limnol. Oceanogr. 32 (1987), 634-644.
  • 19. G. A. Paffenhofer and K. B. Van Sant, The feeding response of a marine planktonic copepod to quantity and quality of particles, Mar. Ecol. Prog. Ser. 27 (1985), 55-65.
  • 20. C. Evans, D. W. Pond and W. H. Wilson, Changes in Emiliania huxleyi fatty acid profiles during infection with E. huxleyi virus 86: physiological and ecological implications, Aquat. Microb. Ecol., 55 (2009), 219-228.
  • 21. G. Bratbak, J. K. Egge and M. Heldal, Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms, Mar. Ecol. Prog. Ser., 93 (1993), 39-48.
  • 22. C. Evans and W.H. Wilson, Preferential grazing of Oxyrrhis marina on virus infected Emiliania huxleyi, Limnol. Oceanogr., 53 (2008), 2035-2040.
  • 23. A. Vermont, J. M. Martnez, J. D. Waller, et al., Virus infection of Emiliania huxleyi deters grazing by the copepod Acartia tonsa, J. Plankton Res., 38 (2016), 1194-1205.    
  • 24. D. W. Townsend, M. D. Keller, P. M. Holligan, et al., Blooms of the coccolithophore Emiliania huxleyi with respect to hydrography in the Gulf of Maine, Cont. Shelf Res., 14 (1994), 979-1000.    
  • 25. W. H. Wilson, G. A. Tarran, D. Schroeder, et al., Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel, J. Mar. Biol. Assoc. U.K., 82 (2002), 369-377.
  • 26. C. Evans, S. V. Kadner, L. J. Darroch, et al., The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: An Emiliania huxleyi culture study, Limnol. Oceanogr., 52 (2007), 1036-1045.
  • 27. S. Strom, G. Wolfe, J. Holmes, et al., Chemical defense in the microplankton I: Feeding and growth rates of heterophic protists on the DMS-producing phytoplankter Emiliania huxleyi, Limnol. Oceanogr., 48 (2003), 217-229.    
  • 28. G. V. Wolfe and M. Steinke, Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi, Limnol. Oceanogr., 41 (1996), 1151-1160.
  • 29. M. Steinke, G. Malin and P. S. Liss, Trophic interaction in the sea: an ecological role for climate relevant volatiles? J. Phycol., 38 (2002), 630-630.
  • 30. E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection, Math. Biosci., 149 (1998), 57-76.
  • 31. E. Beltrami and T.O. Carroll, Modeling the role of viral disease in recurrent phytoplankton blooms, J. Math. Biol., 32 (1994), 857-863.
  • 32. S. Gakkhar and K. Negi, A mathematical model for viral infection in toxin producing phytoplankton and zooplankton system, Appl. Math. Comp., 179 (2006), 301-313.
  • 33. J. Chattopadhyay and S. Pal, Viral infection on phytoplankton-zooplankton system: A mathematical model, Ecol. Model., 151 (2002), 15-28.
  • 34. N. Bairagi, P. K. Roy, R. R. Sarkar, et al., Virus replication factor may be a controlling agent for obtaining disease-free system in a multi-species eco-epidemiological system, J. Biol. Syst., 13 (2005), 245-259.    
  • 35. J. Labille and J. Brant, Stability of nanoparticles in water, Nanomedicine, 5 (2010), 985-998.
  • 36. A. J. Miao, K. A. Schwehr, C. Xu, et al., The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances, Environ. Pollut., 157 (2009), 3034-3041.
  • 37. R. J. Miller, S. Bennett, A. A. Keller, et al., TiO2 nanoparticles are phototoxic to marine phytoplankton, PLoS ONE, 7 (2012), e30321.
  • 38. S. Rana, S. Samanta, S.Bhattacharya, et al., The effect of nanoparticles on plankton dynamics: A mathematical model, BioSystems, 127 (2015), 28-41.
  • 39. P. Panja, S. K. Mondal and D. K. Jana, Effects of toxicants on phytoplankton-zooplankton-fish dynamics and harvesting, Chaos Solit. Fract., 104 (2017), 389-399.
  • 40. X. Yu, S. Yuan and T. Zhang, Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment, Appl. Math. Comp., 347 (2019), 249-264.
  • 41. N. Bairagi and D. Adak, Complex dynamics of a predator-prey-parasite system: An interplay among infection rate, predator's reproductive gain and preference, Ecol. Compl., 22 (2015), 1-12.
  • 42. N. Bairagi, S. Saha, S. Chaudhuri, et al., Zooplankton selectivity and nutritional value of phytoplankton influences a rich variety of dynamics in a plankton population model, Phy. Rev. E, 99 (2019), 012406.
  • 43. K. Bester, H. Hhnerfuss, U. Brockmann, et al., Biological effects of triazine herbicide contamination on marine phytoplankton, Arch. Environ. Contam. Toxicol., 29 (1995), 277-283.
  • 44. R. C. Antweiler, C. J. Patton and H. E. Taylor, Nutrients, in chemical data for water samples collected during four upriver cruises on the Mississippi river between New Orleans, Louisiana, and Minneapolis, Minnesota, May 1990-April 1992, J.A. Moody, ed., U.S. Geological Survey Open-File Report, 94-523 (1995), 89-125.
  • 45. U.S. Environmental Protection Agency Great Lakes National Program Office Significant Activities Report. http://www.epa.gov/glnpo/aoc/waukegan.html.
  • 46. J. R. Rueter, S. W. Chisholm and F. Morel, Effects of copper toxicity on silicon acid uptake and growth in Thalassiosira pseudonana, J. Phycol. 17 (1981) 270-278.
  • 47. J. C. Holmes and W. M. Bethel, Modification of intermediate host behavior by parasites, In: Canning, E.V., Wright, C.A. (Eds.), Behavioral Aspects of Parasite Transmission. Suppl. I to Zool. f. Linnean Soc., 51 (1972), 123-149.
  • 48. K. D. Lafferty, Foraging on prey that are modified by parasites, Am. Nat., 140 (1992), 854-867.
  • 49. W. D. Hamilton, R. Axelrod and R. Tanese, Sexual reproduction as an adaptation to resist parasite: a review, Proc. Natl. Acad. Sci. USA, 87 (1990), 3566-3573.
  • 50. H. L. Smith, The Rosenzweig-Macarthur predator-prey model, https://math.la.asu.edu/halsmith/Rosenzweig.pdf.
  • 51. S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int. Stat. Rev., 62 (1994), 229-243.
  • 52. S. Marino, I. B. Hogue, C. J. Ray, et al., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196.
  • 53. M. L. Rosenzweig, Paradox of enrichment: destabilization of exploitation ecosystems in ecological time, Science, 171 (1971), 385.
  • 54. A. C. Baudoux, A. Noordeloos, M. Veldhuis, et al., Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters, Aquat. Microb. Ecol., 44 (2006), 207-217.
  • 55. C. Evans, S. D. Archer, J. Stphan, et al., Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population, Aquat. Microb. Ecol., 30 (2003), 207-219.
  • 56. A. Chhater, H. Purohit, R. Shanker, et al., Bacterial consortia for crude oil spill remediation, Wat. Sci. Technol., 34 (1996), 187-193.
  • 57. B. D. Duval, UV from sunlight excites nanoparticles to kill phytoplankton in lab setting, (2012) http://earthsky.org/human-world/uv-from-sunlight-excites-nanoparticles-to-kill-phytoplankton-in-lab-setting/.
  • 58. A. Miao, X. Y. Zhang, Z. Luo, et al., Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton, Environ. Toxicol. Chem., 29 (2010), 2814-2822.
  • 59. G. Birkhoff and G. C. Rota, Ordinary Differential Equations, 4th edn. John Wiley & Sons, New York (1989).
  • 60. J. K. Hale, Introduction to Functional Differential Equations, vol. 99, Springer, Berlin (1993).
  • 61. X. Yang, L. Chen and J. Chen, Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models, Comput. Math. Appl., 32 (1996), 109-116.
  • 62. V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Marcel Dekker, Inc., New York/Basel (1989).
  • 63. G. Gandolfo, Economic Dynamics, Springer, New York, USA (1996).


This article has been cited by

  • 1. Arindam Mandal, Pankaj Kumar Tiwari, Samares Pal, Impact of awareness on environmental toxins affecting plankton dynamics: a mathematical implication, Journal of Applied Mathematics and Computing, 2020, 10.1007/s12190-020-01441-5

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved