
Mathematical Biosciences and Engineering, 2020, 17(1): 538574. doi: 10.3934/mbe.2020029
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Agestructured viral dynamics in a host with multiple compartments
1 Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
2 Department of Applied Mathematics, National Pingtung University, Pingtung, ROC 90003, Taiwan
Received: , Accepted: , Published:
Special Issues: Multiscale dynamics of infectious diseases, immune responses and therapeutics
References
1. R. V. Culshaw, S. Ruan and G. Webb, A mathematical model of celltocell spread of HIV1 that includes a time delay, J. Math. Biol., 46 (2003), 425444.
2. M. A. Nowak and R. M. May, Virus Dynamics, Oxford University Press, New York, 2000.
3. A. S. Perelson, D. E. Kirschner and R. de Boer, Dynamics of HIV infection of CD4+ Tcells, Math. Biosci., 114 (1993), 81125.
4. C. Y. Cheng, Y. Dong and Y. Takeuchi, An agestructured virus model with two routs of infection in heterogeneous environments, Nonlinear Anal. RWA, 39 (2018), 464491.
5. S. Nakaoka, S. Iwami and K. Sato, Dynamics of HIV infection in lymphoid tissue network, J. Math. Biol., 72 (2016), 909938.
6. S. Wang, J. Wu and L. Rong, A note on the global properties of an agestructured viral dynamic model with multiple target cell populations, Math. Biosci. Eng., 14 (2017), 805820.
7. M. C. Strain, D. D. Richman, J. K. Wong, et al., Spatiotemporal dynamics of HIV propagation, J. Theor. Biol., 218 (2002), 8596.
8. S. I. Fox, Human Physiology, 7ed, McgrawHill, 2002.
9. V. Bronte and M. J. Pittet, The spleen in local and systemic regulation of immunity, Immunity, 39 (2013), 806818.
10. C. Casteleyn, P. Cornillie, C. Van Ginneken, et al., Lymph drainage from the ovine tonsils: an anatomical study of the tonsillar lymph vessels, Anat. Histol. Embryol., 43 (2014), 482489.
11. M. A. Weinreich and K. A. Hogquist, Thymic emigration: when and how T cells leave home, J. Immunol., 181 (2008), 22652270.
12. E. L. Haseltine, V. Lam, J. Yin, et al., Imageguided modeling of virus growth and spread, Bull. Math. Biol., 70 (2008), 17301748.
13. T. T. Murooka, M. Deruaz, F. Marangoni, et al., HIVinfected T cells aremigratory vehicles for viral dissemination, Nature, 490 (2012), 283287.
14. G. A. Funk, V. A. Jansen, S. Bonhoeffer, et al., Spatial models of virusimmune dynamics, J. Theor. Biol., 233 (2005), 221236.
15. W. Hübner, G. P. McNerney, P. Chen, et al., Quantitative 3D video microscopy of HIV transfer across T cell virological synapses, Science, 323 (2009), 17431747.
16. C. Zhang, S. Zhou, E. Groppelli, et al., Hybrid spreading mechanisms and T cell activation shape the dynamics of HIV1 infection, PLOS Computational Biology, 11 (4) (2015), e1004179.
17. H. R. Thieme and C. CastilloChavez, How may the infectionagedependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (1993), 14471479.
18. P. W. Nelson, M. A. Gilchrist, D. Coombs, et al., An agestructured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 9 (2004), 267288.
19. P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infectionage model, Appl. Anal., 89 (2010), 11091140.
20. T. Kuniya, J. Wang and H. Inaba, A multigroup SIR epidemic model with age structure, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 35153550.
21. J. Yang, Y. Chen and F. Xu, Effect of infection age on an SIS epidemic model on complex networks, J. Math. Biol., 73 (2016), 12271249.
22. P. Magal and C. C. McCluskey, Twogroup infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 10581095.
23. H. R. Thieme, Semiflows generated by Lipschitz perturbations of nondensely defined operators, Differ. Integral Equ., 3 (1990), 10351066.
24. R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985.
25. J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr. 25, AMS, Providence, RI, 1988.
26. C. C. McCluskey, Global stability for an SEI epidemiological model with continuous agestructure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819841.
27. R. Adams and J. Fournier, Sobolev Spaces, Second edition, Pure Appl. Math. 140, Elsevier/Academic Press, Amsterdam, 2003.
28. P. Magal and X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251275.
29. W. Wang and X. Q. Zhao, An endemic model in a patchy environment, Math. Biosci., 190 (2004), 97112.
30. H. R. Thieme, Spectral bound and reproduction number for infinitedimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188211.
31. M. S. Ciupe, B. L. Bivort, D. M. Bortz, et al., Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models, Math. Biosci., 200 (2006), 127.
32. M. Stafford, L. Corey, E. Daar, et al., Modeling plasma virus concentration during primary infection, J. Theor. Biol., 203 (2000), 285301.
33. Y. Yang, L. Zou and S. Ruan, Global dynamics of a delayed withinhost viral infection model with both virustocell and celltocell transmissions, Math. Biosci., 270 (2015), 183191.
34. G. F. Webb, Theory of nonlinear agedependent population dynamics, Marcel Dekker, New York, 1985.
35. C. CastilloChavez and H. Thieme, Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogenity (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Wuerz, (1995), 3350.
36. H. R. Thieme, Convergence results and a PoincaréBendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755763.
37. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics 9, SIAM, Philadelphia, 1994.
38. J. K. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal., 20 (1989), 388395.
39. M. Fiedler, Special matrices and their applications in numerical mathematics, Martinus Nijhoff Publishers, The Hague, 1986.
40. Y. Nakata and G. Röst, Global analysis for spread of infectious diseases via transportation networks, J. Math. Biol., 70 (2015), 14111456.
41. A. T. Raftery, Applied basic science for basic surgical training, Churchill Livingstone, London, 2008.
42. J. Wang, R. Zhang and T. Kuniya, Global dynamics for a class of ageinfection HIV models with nonlinear infection rate, J. Math. Anal. Appl., 432 (2015), 289313.
43. C. A. Beauchemin, T. Miura and S. Iwami, Duration of SHIV production by infected cells is not exponentially distributed: Implications for estimates of infection parameters and antiviral efficacy, Sci. Rep., 7 (2017), 42765.
44. M. Boullé, T. G. Müller, S. Dähling, et al., HIV celltocell spread results in earlier onset of viral gene expression by multiple infections per cell, PLoS Pathog., 12 (2016), e1005964.
45. K. M. Law, N. L. Komarova, A. W. Yewdall, et al., In vivo HIV1 celltocell transmission promotes multicopy microcompartmentalized infection, Cell Rep., 15 (2016), 27712783.
46. A. Sigal, J. T. Kim, A. B. Balazs, et al., Celltocell spread of HIV permits ongoing replication despite antiretroviral therapy, Nature, 477 (2011), 95.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)