Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Age-structured viral dynamics in a host with multiple compartments

1 Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
2 Department of Applied Mathematics, National Pingtung University, Pingtung, ROC 90003, Taiwan

Special Issues: Multiscale dynamics of infectious diseases, immune responses and therapeutics

Several studies have reported dual pathways for HIV cell infection, namely the binding of free virions to target cell receptors (cell-free), and direct transmission from infected cells to uninfected cells through virological synapse (cell-to-cell). Furthermore, understanding spread of the infection may require a relatively in-depth comprehension of how the connection between organs, each with characteristic cell composition and infection kinetics, affects viral dynamics. We propose a virus model consisting of multiple compartments with cell populations subject to distinct infectivity kernels as a function of cell infection-age, in order to imitate the infection spread through various organs. When the within-host structure is strongly connected, we formulate the basic reproduction number to be the threshold value determining the viral persistence or extinction. On the other hand, in non-strongly connected cases, we also formulate a sequence of threshold values to find out the infection pattern in the whole system. Numerical results of derivative examples show that: (1) In a strongly connected system but lacking some directional connection between compartments therein, the migration of cells certainly affects the viral dynamics and it may not monotonously depend on the value of migration rate. (2) In a non-strongly connected structure, increasing migration rate may first change persistence of the virus to extinction in the whole system, and then for even larger migration rate, trigger the infection in a subset of compartments. (3) For data-informed cases of intracellular delay and gamma-distributed cell infectivity kernels, compartments with faster kinetics representative of cell-to-cell transmission mode, as opposed to cell-free, can promote persistence of the virus.
  Article Metrics

Keywords viral dynamics; age since infection; heterogeneous environment; within-host connection

Citation: Cameron J. Browne, Chang-Yuan Cheng. Age-structured viral dynamics in a host with multiple compartments. Mathematical Biosciences and Engineering, 2020, 17(1): 538-574. doi: 10.3934/mbe.2020029


  • 1. R. V. Culshaw, S. Ruan and G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46 (2003), 425-444.
  • 2. M. A. Nowak and R. M. May, Virus Dynamics, Oxford University Press, New York, 2000.
  • 3. A. S. Perelson, D. E. Kirschner and R. de Boer, Dynamics of HIV infection of CD4+ T-cells, Math. Biosci., 114 (1993), 81-125.
  • 4. C. Y. Cheng, Y. Dong and Y. Takeuchi, An age-structured virus model with two routs of infection in heterogeneous environments, Nonlinear Anal. RWA, 39 (2018), 464-491.
  • 5. S. Nakaoka, S. Iwami and K. Sato, Dynamics of HIV infection in lymphoid tissue network, J. Math. Biol., 72 (2016), 909-938.
  • 6. S. Wang, J. Wu and L. Rong, A note on the global properties of an age-structured viral dynamic model with multiple target cell populations, Math. Biosci. Eng., 14 (2017), 805-820.
  • 7. M. C. Strain, D. D. Richman, J. K. Wong, et al., Spatiotemporal dynamics of HIV propagation, J. Theor. Biol., 218 (2002), 85-96.
  • 8. S. I. Fox, Human Physiology, 7ed, Mcgraw-Hill, 2002.
  • 9. V. Bronte and M. J. Pittet, The spleen in local and systemic regulation of immunity, Immunity, 39 (2013), 806-818.
  • 10. C. Casteleyn, P. Cornillie, C. Van Ginneken, et al., Lymph drainage from the ovine tonsils: an anatomical study of the tonsillar lymph vessels, Anat. Histol. Embryol., 43 (2014), 482-489.
  • 11. M. A. Weinreich and K. A. Hogquist, Thymic emigration: when and how T cells leave home, J. Immunol., 181 (2008), 2265-2270.
  • 12. E. L. Haseltine, V. Lam, J. Yin, et al., Image-guided modeling of virus growth and spread, Bull. Math. Biol., 70 (2008), 1730-1748.
  • 13. T. T. Murooka, M. Deruaz, F. Marangoni, et al., HIV-infected T cells aremigratory vehicles for viral dissemination, Nature, 490 (2012), 283-287.
  • 14. G. A. Funk, V. A. Jansen, S. Bonhoeffer, et al., Spatial models of virus-immune dynamics, J. Theor. Biol., 233 (2005), 221-236.
  • 15. W. Hübner, G. P. McNerney, P. Chen, et al., Quantitative 3D video microscopy of HIV transfer across T cell virological synapses, Science, 323 (2009), 1743-1747.
  • 16. C. Zhang, S. Zhou, E. Groppelli, et al., Hybrid spreading mechanisms and T cell activation shape the dynamics of HIV-1 infection, PLOS Computational Biology, 11 (4) (2015), e1004179.
  • 17. H. R. Thieme and C. Castillo-Chavez, How may the infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (1993), 1447-1479.
  • 18. P. W. Nelson, M. A. Gilchrist, D. Coombs, et al., An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 9 (2004), 267-288.
  • 19. P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.
  • 20. T. Kuniya, J. Wang and H. Inaba, A multi-group SIR epidemic model with age structure, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3515-3550.
  • 21. J. Yang, Y. Chen and F. Xu, Effect of infection age on an SIS epidemic model on complex networks, J. Math. Biol., 73 (2016), 1227-1249.
  • 22. P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 1058-1095.
  • 23. H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differ. Integral Equ., 3 (1990), 1035-1066.
  • 24. R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985.
  • 25. J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr. 25, AMS, Providence, RI, 1988.
  • 26. C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819-841.
  • 27. R. Adams and J. Fournier, Sobolev Spaces, Second edition, Pure Appl. Math. 140, Elsevier/Academic Press, Amsterdam, 2003.
  • 28. P. Magal and X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
  • 29. W. Wang and X. Q. Zhao, An endemic model in a patchy environment, Math. Biosci., 190 (2004), 97-112.
  • 30. H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
  • 31. M. S. Ciupe, B. L. Bivort, D. M. Bortz, et al., Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models, Math. Biosci., 200 (2006), 1-27.
  • 32. M. Stafford, L. Corey, E. Daar, et al., Modeling plasma virus concentration during primary infection, J. Theor. Biol., 203 (2000), 285-301.
  • 33. Y. Yang, L. Zou and S. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., 270 (2015), 183-191.
  • 34. G. F. Webb, Theory of nonlinear age-dependent population dynamics, Marcel Dekker, New York, 1985.
  • 35. C. Castillo-Chavez and H. Thieme, Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogenity (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Wuerz, (1995), 33-50.
  • 36. H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
  • 37. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics 9, SIAM, Philadelphia, 1994.
  • 38. J. K. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.
  • 39. M. Fiedler, Special matrices and their applications in numerical mathematics, Martinus Nijhoff Publishers, The Hague, 1986.
  • 40. Y. Nakata and G. Röst, Global analysis for spread of infectious diseases via transportation networks, J. Math. Biol., 70 (2015), 1411-1456.
  • 41. A. T. Raftery, Applied basic science for basic surgical training, Churchill Livingstone, London, 2008.
  • 42. J. Wang, R. Zhang and T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, J. Math. Anal. Appl., 432 (2015), 289-313.
  • 43. C. A. Beauchemin, T. Miura and S. Iwami, Duration of SHIV production by infected cells is not exponentially distributed: Implications for estimates of infection parameters and antiviral efficacy, Sci. Rep., 7 (2017), 42765.
  • 44. M. Boullé, T. G. Müller, S. Dähling, et al., HIV cell-to-cell spread results in earlier onset of viral gene expression by multiple infections per cell, PLoS Pathog., 12 (2016), e1005964.
  • 45. K. M. Law, N. L. Komarova, A. W. Yewdall, et al., In vivo HIV-1 cell-to-cell transmission promotes multicopy micro-compartmentalized infection, Cell Rep., 15 (2016), 2771-2783.
  • 46. A. Sigal, J. T. Kim, A. B. Balazs, et al., Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy, Nature, 477 (2011), 95.


Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved