
Mathematical Biosciences and Engineering, 2019, 16(6): 82438267. doi: 10.3934/mbe.2019417
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A generalization of Birchs theorem and vertexbalanced steady states for generalized massaction systems
1 Department of Mathematics, University of WisconsinMadison, Van Vleck Hall, 480 Lincoln Dr, Madison, WI 53706, USA;
2 Faculty of Mathematics, University of Vienna, 1010 Vienna, Austria;
3 Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA;
4 Department of Biomolecular Chemistry, University of WisconsinMadison, 420 Henry Mall, WI 53706, USA
Received: , Accepted: , Published:
Special Issues: Mathematical analysis of reaction networks: theoretical advances and applications
References
1. M. Feinberg, Complex balancing in general kinetic systems, Arch. Ration. Mech. Anal., 49 (1972), 187194.
2. F. Horn and R. Jackson, General mass action kinetics, Arch. Ration. Mech. Anal., 47 (1972), 81116.
3. F. Horn, Necessary and Sufficient Conditions for Complex Balancing in ChemicalKinetics, Arch. Ration. Mech. Anal., 49 (1972), 172186.
4. M. A. Savageau, Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions, J. Theor. Biol., 25 (1969), 365369.
5. E. O. Voit, Biochemical systems theory: a review, ISRN Biomath., 2013 (2013), Article ID 897658.
6. S. Müller and G. Regensburger, Generalized massaction systems and positive solutions of polynomial equations with real and symbolic exponents, (2014), Lecture notes in computer science, 8660 LNCS, Springer, 302323.
7. S. Müller and G. Regensburger, Generalized mass action systems: Complex balancing equilibria and sign vectors of the stoichiometric and kineticorder subspaces, SIAM J. Appl. Math., 72 (2012), 123.
8. M. D. Johnston, Translated Chemical Reaction Networks, Bull. Math. Biol., 76 (2014), 10811116.
9. L. Brenig, Complete factorization and analytic solutions of generalized LotkaVolterra equations, Physics Letters, 133 (1989), 378382.
10. L. Brenig and A. Goriely, Universal canonical forms for timecontinuous dynamical systems, Phys. Rev. A, 40 (1989), 41194122.
11. M. Feinberg, Lectures on chemical reaction networks, 1979. Available from: https://crnt.osu.edu/LecturesOnReactionNetworks.
12. J. Gunawardena, Chemical reaction network theory for insilico biologists, 2003. Available from: http://vcp.med.harvard.edu/papers/crnt.pdf.
13. G. Craciun, A. Dickenstein, A. Shiu, et al., Toric dynamical systems, J. Symbolic Comput., 44 (2009), 15511565.
14. B. Boros, S. Müller and G. Regensburger, Complexbalanced equilibria of generalized massaction systems: Necessary conditions for linear stability, ArXiv eprints, arXiv:1906.12214 [math.DS].
15. L. Pachter and B. Sturmfels, Algebraic Statistics for Computational Biology, Cambridge University Press, 8 (2005).
16. G. Craciun, L. D. GracíaPuente and F. Sottile, Some geometrical aspects of control points for toric patches, Mathematical methods for curves and surfaces, Springer, 111135.
17. J. D. Brunner and G. Craciun, Robust persistence and permanence of polynomial and power law dynamical systems, SIAM J. Appl. Math., 78 (2018), 801825.
18. G. Craciun, Polynomial dynamical systems as reaction networks and toric differential inclusions, SIAM J. Appl. Algebra Geom., 3 (2019), 87106.
19. P. Y. Yu and G. Craciun, Mathematical analysis of chemical reaction systems, Isr. J. Chem, 58 (2018), 733741.
20. M. D. Johnston, A computational approach to steady state correspondence of regular and generalized mass action systems, Bull. Math. Biol., 77 (2015), 10651100.
21. C. Conradi, J. SaezRodriguez, E. D. Gilles, et al., Using chemical reaction network theory to discard a kinetic mechanism hypothesis, IEE Proc.Syst. Biol., 152 (2005), 243248.
22. N. I. Markevich, J. B. Hoek and B. N. Kholodenko, Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades, J. Cell. Biol., 164 (2004), 353359.
23. D. F. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71 (2011), 14871508.
24. M. Gopalkrshnan, E. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2013), 758797.
25. G. Craciun, F. Nazarov and C. Pantea, Persistence and permanence of massaction and powerlaw dynamical systems, SIAM J. Appl. Math., 73 (2013), 305329.
26. C. Pantea, On the persistence and global stability of massaction systems, SIAM J. Math. Anal., 44 (2012), 16361673.
27. G. Craciun, Toric Differential Inclusions and a Proof of the Global Attractor Conjecture, ArXiv eprints, 141. arXiv:1501.02860. Available from: http://arxiv.org/abs/1501.02860.
28. S. Müller, J. Hofbauer and G. Regensburger, On the bijectivity of families of exponential/generalized polynomial maps, SIAM J. Appl. Algebra Geom., 3 (2019), 412438.
29. V. Guillemin and A. Pollack, Differential Topology, PrenticeHall, 1974.
30. A. R. Shastri, Elements of Differential Topology, CRC Press, 2011.
31. B. Boros, J. Hofbauer and S. Müller, On global stability of the Lotka reactions with generalized massaction kinetics, Acta Appl. Math., 151 (2017), 5380.
32. B. Boros, J. Hofbauer, S. Müller, et al., The center problem for the Lotka reactions with generalized massaction kinetics, Qual. Theo. Dyn. Syst., 17 (2018), 403410.
33. B. Boros, J. Hofbauer, S. Müller, et al., Planar Ssystems: Global stability and the center problem, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 707727.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)