
Mathematical Biosciences and Engineering, 2019, 16(6): 80928108. doi: 10.3934/mbe.2019407.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Effect of adaptive rewiring delay in an SIS network epidemic model
1 School of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan Shanxi 030006, China;
2 Complex Systems Research Center, Shanxi University, Taiyuan Shanxi 030006, China;
3 Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, Shanxi 030006, China;
4 Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland, A1C 5S7, Canada
Received: , Accepted: , Published:
Special Issues: Recent Advances in Mathematical Population Dynamics
Keywords: SIS network epidemic model; adaptive rewiring; time delay; line equilibria
Citation: Jing Li, Zhen Jin, Yuan Yuan. Effect of adaptive rewiring delay in an SIS network epidemic model. Mathematical Biosciences and Engineering, 2019, 16(6): 80928108. doi: 10.3934/mbe.2019407
References:
 1. M. Faloutsos, P. Faloutsos and C. Faloutsos, On powerlaw relationships of the internet topology, Comput. Commun. Rev., 29 (1999), 251262.
 2. V. Colizza, A. Barrat, M. Barthélemy, et al., The role of the airline transportation network in the prediction and predictability of global epidemics, Proc. Nati. Acad. Sci. USA, 103 (2006), 20152020.
 3. M. E. J. Newman, The structure of scientific collaboration networks, Proc. Nati. Acad. Sci. USA, 98 (2001), 404409.
 4. M. E. J. Newman, Scientific collaboration networks. I. Network construction and fundamental results, Phys. Rev. E, 64 (2001), 016131.
 5. P. L. Krapivsky, S. Redner and F. Leyvraz, Connectivity of growing random networks, Phys. Rev. Lett., 85 (2000), 46294632.
 6. S. N. Dorogovtsev and J. F. F. Mendes, Scaling properties of scalefree evolving networks: Continuous approach, Phys. Rev. E, 63 (2001), 056125.
 7. G. Kossinets and D. J. Watts, Empirical analysis of an evolving social network, Science, 311(2006), 8890.
 8. A. Clauset, C. R. Shalizi and M. E. J. Newman, Powerlaw distributions in empirical data, SIAM Rev., 51 (2009), 661703.
 9. M. Kivela, A. Arenäs, M. Barthélemy, et al., Multilayer network, J. Comp. Net., 2 (2014), 203271.
 10. S. Boccaletti, G. Bianconi, R. Criado, et al., The structure and dynamics of multilayer networks, Phys. Rep., 544 (2014), 1122.
 11. V. Colizza and A. Vespignani, Invasion threshold in heterogeneous metapopulation networks, Phys. Rev. Lett., 99 (2007), 148701.
 12. N. Masuda, Effects of diffusion rates on epidemic spreads in metapopulation networks, New J. Phys., 12 (2010), 093009.
 13. W. K. V. Chan and C. Hsu, Service scaling on hypernetworks, Serv. Science, 1 (2009), 1731.
 14. A. Trilla, G. Trilla and C. Daer, The 1918 "Spanish flu" in Spain, Clin. Infect. Dis., 47 (2008), 668673.
 15. M. A. Marra, S. J. Jones, C. R. Astell, et al., The genome sequence of the SARSassociated coronavirus, Science, 300 (2003), 13991404.
 16. J. S. Peiris, S. T. Lai, L. L. Poon, et al., Coronavirus as a possible cause of severe acute respiratory syndrome, Lancet, 361 (2003), 13191325.
 17. T. R. Frieden, I. Damon, B. P. Bell, et al., Ebola 2014new challenges, new global response and responsibility, New Engl. J. Med., 371 (2014), 11771180.
 18. W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Soc. A, 115 (1927), 700721.
 19. N. T. J. Bailey, The mathematical theory of infectious diseases and its applications, Hafner Press, New York, 1975.
 20. R. Anderson and R. May, Infectious disease of human: dynamic and control, Press Oxford, Oxford University, 1991.
 21. M. Martcheva, Introduction to Mathematical Epidemiology, SpringerVerlag, New York, 2010.
 22. I. AlDarabsah and Y. Yuan, A timedelayed epidemic model for Ebola disease transmission, Appl. Math. Comput., 290 (2016), 307325.
 23. A. S. Klovdahl, Social networks and the spread of infectious diseases£the AIDS example, Soc. Sci. Med., 21 (1985), 12031216.
 24. R. M. May and R. M. Andemon, Transmission dynamics of HIV infection, Nature, 326 (1987), 137142.
 25. O. Diekmann, M. C. M. De Jong and J. A. J. Metz, A deterministic epidemic model taking account of repeated contacts between the same Individuals, J. Appl. Prob., 35 (1998), 448462.
 26. Y. Moreno, R. PastorSatorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Euro. Phys. J. B, 26 (2002), 521529.
 27. E. Volz, SIR dynamics in random networks with heterogeneous connectivity, J. Math. Biol., 56(2008) 293310.
 28. C. T. Bauch, The spread of infectious diseases in spatially structured populations: an invasory pair approximation, Math. Biosci., 198 (2005), 217237.
 29. C. Moore and M. E. J. Newman, Epidemics and percolation in smallworld networks, Phys. Rev. E, 61 (2000), 56785682.
 30. R. PastorSatorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63 (2001) 066117.
 31. N. M. Ferguson, D. A. T. Cummings, C. Fraser, et al., Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448452.
 32. T. Gross, C. J. D. DLimaa and B. Blasius, Epidemic Dynamics on an Adaptive Network, Phys. Rev. Lett. 96 (2006), 208701.
 33. D. H. Zanette and S. RisauGusmán, Infection spreading in a population with evolving contacts, J. Biol. Phys., 34 (2008), 135148.
 34. L. B. Shaw and I. B. Schwartz, Fluctuating epidemics on adaptive networks, Phys. Rev. E 77(2008), 066101.
 35. A. SzabóSolticzky, L. Berthouze, I. Z. Kiss, et al., Oscillating epidemics in a dynamic network model: stochastic and meanfield analysis, J. Math. Biol. 72 (2016), 11531176.
 36. J. Li, Z. Jin, Y. Yuan, et al., A nonMarkovian SIR network model with fixed infectious period and preventive rewiring, Comput. Math. Appl., 75 (2018), 38843902.
 37. I. Z. Kiss, L. Berthouze, T. J. Taylor, et al., Modelling approaches for simple dynamic networks and applications to disease transmission models, Proc. R. Soc. A, 468 (2012), 13321355.
 38. T. Rogers, W. CliffordBrown, C. Mills, et al., Stochastic oscillations of adaptive networks: application to epidemic modelling, J. Stat. Mech., 2012 (2012), P08018.
 39. S. RisauGusman and D. H. Zanette, Contact switching as a control strategy for epidemic outbreaks, J. Theor. Biol., 257 (2009), 5260.
 40. M. J. Keeling, The effects of local spatial structure on epidemiological invasions, Proc. R. Soc. Lond. B, 266 (1999), 859867.
 41. X. Zhang, C. Shan, Z. Jin, et al., Complex dynamics of epidemic models on adaptive networks,Journal of differential equations, J. Differ. Equations, 266 (2019), 803832.
 42. J. Graef, M. Li and L. Wang, A study on the effects of disease caused death in a simple epidemic model, in Dyn. Syst. Differ. Equations (eds. W. Chen and S Hu), Southwest Missouri State University Press, (1998), 288300.
 43. M. Y. Li, W. Liu, C. Shan, et al., Turning Points And Relaxation Oscillation Cycles in Simple Epidemic Models, SIAM J. Appl. Math., 76 (2016), 663687.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *