Citation: Cheng-Cheng Zhu, Jiang Zhu, Xiao-Lan Liu. Influence of spatial heterogeneous environment on long-term dynamics of a reaction-diffusion SVIR epidemic model with relaps[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5897-5922. doi: 10.3934/mbe.2019295
[1] | F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology (Second Edition), Springer, 2012. |
[2] | K. Dietz, The first epidemic model: A historical note on P.D. En'ko, Australian J. Stat., 30 (1988), 56–65. |
[3] | H. F. Huo and X. M. Zhang, Complex dynamics in an alcoholism model with the impact of Twitter, Math. Biosci., 281 (2016), 24–35. |
[4] | H. F. Huo and C. C. Zhu, Influence of relapse in a giving up smoking model, Abstr. Appl. Anal., (2013), 525461. |
[5] | H. F. Huo and X. M. Zhang, Modelling effects of treatment at home on tuberculosis transmission dynamics, Appl. Math. Model., 40 (2016), 9474–9484. |
[6] | C. Vargas-De-León, On the global stability of SIS, SIR and SIRS epidemic models with standard incidence, Chaos Solitons Fractals, 44 (2011), 1106–1110. |
[7] | C. C. Zhu and J. Zhu, Stability of a reaction-diffusion alcohol model with the impact of tax policy, Comput. Math. Appl., 74 (2017), 613–633. |
[8] | Z. Hu, L. Chang, Z. Teng, et al., Bifurcation analysis of a discrete SIRS epidemic model with standard incidence rate, Adv. Differ. Equ., (2016) 2016, 155. |
[9] | Z. Jiang, W. Ma and J. Wei, Global hopf bifurcation and permanence of a delayed SEIRS epidemic model, Math. Comput. Simul., 122 (2016), 35–54. |
[10] | A. M. Yousef and S. M. Salman, Backward bifurcation in a fractional-order SIRS epidemic model with a nonlinear incidence rate, Int. J. Nonlinear Sci. Numer. Simul., 17 (2016), 401–412. |
[11] | H. Zhao and M. Zhao, Global hopf bifurcation analysis of an susceptible-infective-removed epi-demic model incorporating media coverage with time delay, J. Biol. Dyn., 11 (2016), 8–24. |
[12] | S. Whang, S. Choi and E. Jung, A dynamic model for tuberculosis transmission and optimal treatment strategies in South Korea, J. Theor. Biol., 279 (2011), 120–131. |
[13] | S. Choi and E. Jung, Optimal Tuberculosis Prevention and Control Strategy from a Mathematical Model Based on Real Data, Bull. Math. Biol., 76 (2014), 1566–1589. |
[14] | Y. Hosono and B. Ilyas, Travelling waves for a simple diffusive epidemic model, Math. Model Meth. Appl. Sci., 5 (1995), 935–966. |
[15] | W. T. Li, G. Lin, C. Ma, et al., Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 467–484. |
[16] | R. Peng and X. Q. Zhao, A reaction–diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451–1471. |
[17] | X. Q. Zhao, Global dynamics of a reaction and diffusion model for Lyme disease, J. Math. Biol., 65 (2012), 787–808. |
[18] | Y. X. Zhang and X. Q. Zhao, A reaction-diffusion Lyme disease model with seasonality, SIAM J. Appl. Math., 73 (2013), 2077–2099. |
[19] | Y. J. Lou and X. Q. Zhao, A reaction–diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543–568. |
[20] | G. Webb, A reaction–diffusion model for a deterministic diffusive models, J. Math. Anal. Appl., 84 (1981), 150–161. |
[21] | W. E. Fitzgibbon, M. E. Parrott and G. F. Webb, Diffusion epidemic models with incubation and crisscross dynamics, Math. Biosci., 128 (1985), 131–155. |
[22] | H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population struc-ture and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211. |
[23] | W. Wang and X. Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue trans-mission, SIAM J. Appl. Math., 71 (2011), 147–168. |
[24] | W. Wang and X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652–1673. |
[25] | Z. F. Xie, Cross-diffusion induced Turing instability for a three species food chain model, J. Math. Anal. Appl., 388 (2012), 539–547. |
[26] | K. Hattaf and N. Yousfi, Global stability for reaction–diffusion equations in biology, Comput. Math. Appl., 67 (2014), 1439–1449. |
[27] | E. Latosa and T. Suzuki, Global dynamics of a reaction–diffusion system with mass conservation, J. Math. Anal. Appl., 411 (2014), 107–118. |
[28] | J. B. Wang, W. T. Li and F. Y. Yang, Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission, Commun. Nonlinear Sci. Numer. Simul., 27 (2015), 136–152. |
[29] | Z. Xu, Traveling waves for a diffusive SEIR epidemic model, Comm. Pure Appl. Anal., 15(2016), 871–892. |
[30] | Z. Xu and C. Ai, Traveling waves in a diffusive influenza epidemic model with vaccination, Appl. Math. Model., 40 (2016), 7265–7280. |
[31] | C. C. Zhu, W. T. Li and F. Y. Yang, Traveling waves in a nonlocal dispersal SIRH model with relapse, Comput. Math. Appl., 73 (2017), 1707–1723. |
[32] | C. C. Zhu, W. T. Li and F. Y. Yang, Traveling waves of a reaction-diffusion SIRQ epidemic model with relapse, J. Appl. Anal. Comput., 7 (2017), 147–171. |
[33] | X. Bao, W. Shen and Z. Shen, Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems, Commun. Pure Appl. Anal., 18 (2019) 361–396. |
[34] | K. Yamazaki and X. Wang, Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1297–1316. |
[35] | L. J. S. Allen, B. M. Bolker, Y. Lou, et al., Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1–20. |
[36] | R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction–diffusion model. Part I, J. Differ, Eq,, 247 (2009), 1096–1119. |
[37] | R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239–247. |
[38] | R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction–diffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8–25. |
[39] | T. Kuniya and J. Wang, Lyapunov functions and global stability for a spatially diffusive SIR epidemic model, Appl. Anal., (2016) http://dx.doi.org/10.1080/00036811.2016.1199796. |
[40] | K. Deng and Y. Wu, Dynamics of a susceptible–infected–susceptible epidemic reaction–diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929–946. |
[41] | Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424–4447. |
[42] | H. Li, R. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differ. Equ., 262 (2017), 885–913. |
[43] | Y. Cai, Y. Kang, M. Banerjeed, et al., Complex Dynamics of a host–parasite model with both horizontal and vertical transmissions in a spatial heterogeneous environment, Nonlinear Anal. Real World Appl., 40 (2018), 444–465. |
[44] | Y. Tong and C. Lei, An SIS epidemic reaction–diffusion model with spontaneous infection in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 41 (2018), 443–460. |
[45] | R. Temam, Infinite-Dimensional Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. |
[46] | J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. |
[47] | M. Yang and C. Y. Sun, Exponential attractors for the strongly damped wave equations, Nonlinear Anal. Real World Appl., 11 (2010), 913–919. |
[48] | T. Ma, The theory and method of partial differential equation, Science Press, Beijing, 2011. |
[49] | T. Ma and S. Wang, Phase Transition Dynamics, Springer Science+Business Media, LLC 2014. |
[50] | Y. Li, H. Wu and T. Zhao, Necessary and sufficient conditions for the existence of exponential attractors for semigroups, and applications, Nonlinear Anal., 75 (2012), 6297–6305. |
[51] | Y. Zhong and C. K. Zhong, Exponential attractors for reaction-diffusion equations with arbitrary polynomial growth, Nonlinear Anal., 71(2009), 751–765. |
[52] | J. Zhang and C. K. Zhong, The existence of global attractors for a class of reaction–diffusion equations with distribution derivatives terms in R^{n}, J. Math. Anal. Appl., 427 (2015), 365–376. |
[53] | J. Zhang, P. E. Kloeden, M. Yang, et al., Global exponential κ-dissipative semigroups and expo-nential attraction, Discrete Contin. Dyn. Syst. Ser., 37(2017), 3487–3502. |
[54] | J. Zhang, Y. Wang and C. K. Zhong, Robustness of exponentially κ-dissipative dynamical systems with perturbation, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3875–3890. |
[55] | X. Wang and J. Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dyn., 9 (2015), 233–261. |
[56] | N. K. Vaidya, F. B. Wang and X. Zou, Avian in influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2829–2848. |
[57] | K. Yamazaki, Global well-posedness of infectious disease models without life-time immunity: the cases of cholera and avian in influenza, Math. Med. Biol., 35 (2018), 428–445. |
[58] | Q. X. Ye, Z. Y. Li, M. X. Wang, et al., Introduction to reaction–diffusion equations, second edition, Science Press, Beijing, 2011 (in Chinese). |
[59] | H. L. Smith, Monotone dynamical systems, Mathematical Surveys and Monographs, vol.41, American Mathematical Society, Providence, RI, 1995. |
[60] | I. I. Vrabie, C_{0} semigroups and application, Elsevier Science B.V., New York, 2003. |
[61] | C. V. Pao, Nonlinear Parabolic and Elliptic Equations, New York, London: Plenum, 1992. |
[62] | Z. Du and R. Peng, A priori L^{∞} estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429–1439. |
[63] | Global hepatitis report, 2017. Available from: http://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/. 64. World Health Statistics, 2013. Available from: http://www.who.int/. |