Research article Special Issues

Single-cell data-driven mathematical model reveals possible molecular mechanisms of embryonic stem-cell differentiation

  • Received: 30 January 2019 Accepted: 10 June 2019 Published: 24 June 2019
  • Embryonic development is widely studied due to its application in disease treatment. The published literature demonstrated that Krüppel-like factor 8(KLF8) plays an important role in modulating mesendoderm to definitive endoderm (DE) differentiation. However, it is not clear how KLF8 interacts with other key genes and affects the differentiation process. To qualitatively and quantitatively explore the molecular mechanisms of KLF8 during the differentiation of human embryonic stem cells (hESCs) in detail, we developed a mathematical model to describe the dynamics between KLF8 and two other significant genes, E-cadherin(CDH1) and Zinc-finger E-box-binding homeobox1(ZEB1). Based on the single-cell RNA-seq data, the model structure and parameters were obtained using particle swarm optimization (PSO). The bifurcation analysis and simulation results reveal that the system can exhibit a complex tristable transition, which corresponds to the three states of embryonic development at the single-cell level. We further predict that the novel important gene KLF8 promotes the formation of DE cells by reciprocal inhibition between CDH1 and KLF8 and promotion of the expression of ZEB1. These results may help to shed light on the biological mechanism in the differentiation process of hESCs.

    Citation: Xiao Tu, Qinran Zhang, Wei Zhang, Xiufen Zou. Single-cell data-driven mathematical model reveals possible molecular mechanisms of embryonic stem-cell differentiation[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5877-5896. doi: 10.3934/mbe.2019294

    Related Papers:

    [1] Cristeta U. Jamilla, Renier G. Mendoza, Victoria May P. Mendoza . Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the r-Lambert W function. Mathematical Biosciences and Engineering, 2020, 17(5): 5686-5708. doi: 10.3934/mbe.2020306
    [2] Bruno Buonomo, Marianna Cerasuolo . The effect of time delay in plant--pathogen interactions with host demography. Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473
    [3] Hongying Shu, Wanxiao Xu, Zenghui Hao . Global dynamics of an immunosuppressive infection model with stage structure. Mathematical Biosciences and Engineering, 2020, 17(3): 2082-2102. doi: 10.3934/mbe.2020111
    [4] Hong Yang . Global dynamics of a diffusive phytoplankton-zooplankton model with toxic substances effect and delay. Mathematical Biosciences and Engineering, 2022, 19(7): 6712-6730. doi: 10.3934/mbe.2022316
    [5] Xin-You Meng, Yu-Qian Wu . Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting. Mathematical Biosciences and Engineering, 2019, 16(4): 2668-2696. doi: 10.3934/mbe.2019133
    [6] Zhichao Jiang, Xiaohua Bi, Tongqian Zhang, B.G. Sampath Aruna Pradeep . Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient. Mathematical Biosciences and Engineering, 2019, 16(5): 3807-3829. doi: 10.3934/mbe.2019188
    [7] Jagadeesh R. Sonnad, Chetan T. Goudar . Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences and Engineering, 2009, 6(1): 173-188. doi: 10.3934/mbe.2009.6.173
    [8] Chunhua Shan, Hongjun Gao, Huaiping Zhu . Dynamics of a delay Schistosomiasis model in snail infections. Mathematical Biosciences and Engineering, 2011, 8(4): 1099-1115. doi: 10.3934/mbe.2011.8.1099
    [9] Shishi Wang, Yuting Ding, Hongfan Lu, Silin Gong . Stability and bifurcation analysis of SIQR for the COVID-19 epidemic model with time delay. Mathematical Biosciences and Engineering, 2021, 18(5): 5505-5524. doi: 10.3934/mbe.2021278
    [10] Zenab Alrikaby, Xia Liu, Tonghua Zhang, Federico Frascoli . Stability and Hopf bifurcation analysis for a Lac operon model with nonlinear degradation rate and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 1729-1749. doi: 10.3934/mbe.2019083
  • Embryonic development is widely studied due to its application in disease treatment. The published literature demonstrated that Krüppel-like factor 8(KLF8) plays an important role in modulating mesendoderm to definitive endoderm (DE) differentiation. However, it is not clear how KLF8 interacts with other key genes and affects the differentiation process. To qualitatively and quantitatively explore the molecular mechanisms of KLF8 during the differentiation of human embryonic stem cells (hESCs) in detail, we developed a mathematical model to describe the dynamics between KLF8 and two other significant genes, E-cadherin(CDH1) and Zinc-finger E-box-binding homeobox1(ZEB1). Based on the single-cell RNA-seq data, the model structure and parameters were obtained using particle swarm optimization (PSO). The bifurcation analysis and simulation results reveal that the system can exhibit a complex tristable transition, which corresponds to the three states of embryonic development at the single-cell level. We further predict that the novel important gene KLF8 promotes the formation of DE cells by reciprocal inhibition between CDH1 and KLF8 and promotion of the expression of ZEB1. These results may help to shed light on the biological mechanism in the differentiation process of hESCs.




    [1] J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, et al., Blastocysts Embryonic Stem Cell Lines Derived from Human, Science, 282 (1998), 1145–1147.
    [2] C. E. Murry, M. A. Laflamme, X. Yang, et al., Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate heart, Nature, 510 (2014), 273–277.
    [3] P. P. Tam and D. A. Loebel, Gene function in mouse embryogenesis: get set for gastrulation, Nat. Rev. Genet., 8 (2007), 368–381.
    [4] A. Adamo, I. Paramonov, M. J. Barrero, et al., LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells, Nat. Cell Biol., 13 (2011), 652–659.
    [5] L. Chu, J. Zhang, J. A. Thomson, et al., Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm, Genome Biol., 17 (2016), 173.
    [6] S. Larabee, H. Coia, G. Gallicano, et al., miRNA-17 Members that Target Bmpr2 Influence Signaling Mechanisms Important for Embryonic Stem Cell Differentiation In Vitro and Gastrulation in Embryos, Stem Cells Dev., 24 (2015), 354–371.
    [7] R. A. Young, L. A. Boyer, T. I. Lee, et al., Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells, Cell, 122 (2005), 947–956.
    [8] L. W. Jeffrey, T. A. Beyer, J. L. Wrana, et al., Switch enhancers interpret TGF- and Hippo signaling to control cell fate in human embryonic stem cells, Cell Rep., 5 (2013), 1611–1624.
    [9] J. Rossant, J. S. Draper, A. Nagy, et al., Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells, Cell Stem Cell, 3 (2008), 182–195.
    [10] N. Ivanova, Z. Wang, S. Razis, et al., Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells, Cell Stem Cell, 10 (2012), 440–454.
    [11] A. F. Schier, A. Regev, D. Gennert, et al., Spatial reconstruction of single-cell gene expression data, Nat. Biotechnol., 33 (2015), 495–502.
    [12] J. L. Rinn, C. Trapnell, T. S. Mikkelsen, et al., The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells, Nat. Biotechnol., 32 (2014), 381–386.
    [13] J. Tan and X. Zou, Complex dynamical analysis of a coupled network from innate immune responses, Int. J. Bifurcat. Chaos, 23 (2013), 1350180.
    [14] S. Jin, D. Wang and X. Zou, Trajectory control in nonlinear networked systems and its applications to complex biological systems, SIAM J. Appl. Math, 78 (2018), 629–649.
    [15] S. Jin, F. Wu and X. Zou, Domain control of nonlinear networked systems and applications to complex disease networks, Discrete Cont. Dyn. B, 22 (2017), 2169–2206.
    [16] X. Shu, D. Pei, S. Wei, et al., A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes, Nat. Commun., 8 (2017), 15166.
    [17] M. A. Nieto, J. P. Thiery, R. Y. Huang, et al., Epithelial-mesenchymal transitions in development and disease, Cell, 139 (2009), 871–890.
    [18] J. P. Thiery and J. P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions, Nat. Rev. Mol. Cell Biol., 7 (2006), 131–142.
    [19] H. Peinado, F. Portillo and A. Cano, Transcriptional regulation of cadherins during development and carcinogenesis, Int. J. Dev. Biol., 48 (2004), 365–375.
    [20] A. Voulgari and A. Pintzas, Epithelial mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic, Biochim. Biophys. Acta, 1796 (2009), 75–90.
    [21] J. Zhao, X. Wang, M. Hung, et al., Krüppel-Like Factor 8 Induces Epithelial to esenchymal Transition and Epithelial Cell Invasion, Cancer Res., 67 (2007), 7184–7193.
    [22] Y. Ma, X. Zheng, K. Chen, et al., ZEB1 promotes the progression and metastasis of cervical squamous cell carcinoma via the promotion of epithelial-mesenchymal transition, Int. J. Clin. Exp. Pathol., 8 (2015), 11258–11267.
    [23] D. Chen, Y. Chu, S. Li, et al., Knock-down of ZEB1 inhibits the proliferation, invasion and migration of gastric cancer cells, Chin. J. Cell. Mol. Immunol., 33 (2017), 1073–1078.
    [24] B. L. Li, J. M. Cai, F. Gao, et al., Inhibition of TBK1 attenuates radiation-induced epithelial-mesenchymal transition of A549 human lung cancer cells via activation of GSK-3β and repression of ZEB1, Lab. Invest., 94 (2014), 362–370.
    [25] J. Comijn, G. Berx, Roy F. van, et al., The two-handed E box binding zinc finger protein SIP1 down-regulates E-cadherin and induces invasion, Mol. Cell, 7 (2001), 1267–1278.
    [26] M. Moes, E. Friederich, A. Sol, et al., A novel network integrating a mi-RNA 203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition, PloS One, 7 (2012), e35440.
    [27] U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, 1st edition, Taylor & Francis Inc, Boca Raton, FL, 2006.
    [28] D. Chu, N. R. Zabet and B. Mitavskiy, Models of transcription factor binding: Sensitivity of activation functions to model assumptions, J. Theor. Biol., 257 (2009), 419–429.
    [29] J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95, International Conference on Neural Networks, Perth, WA, Australia, 4 (1995), 1942–1948.
    [30] D. Gillespie, Exact Stochastic Simulation of Coupled Chemical Reactions, J. Phys. Chem., 81 (1977), 2340–2361.
    [31] X.Xiang, Y.Chen, X.Zou, etal., UnderstandinginhibitionofviralproteinsontypeIIFNsignaling pathways with modeling and optimization, J. Theor. Biol., 265 (2010), 691–703.
    [32] S. Shin, O. Rath, K. Cho, et al., Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway, J. Cell Sci., 122 (2009), 425–435.
    [33] T. Tian and K. Burrage, Stochastic models for regulatory networks of the genetic toggle switch, Proc. Natl. Acad. Sci., 103 (2006), 8372–8377.
    [34] M. R. Birtwistle, J. Rauch, B. N. Kholodenko, et al., Emergence of bimodal cell population responses from the interplay between analog single-cell signaling and protein expression noise, BMC Syst. Biol., 16 (2012), 109.
    [35] L. K. Nguyen, M. R. Birtwistle, B. N. Kholodenko, et al., Stochastic models for regulatory networks of the genetic toggle switch, Proc. Natl. Acad. Sci., 103 (2006), 8372–8377.
  • This article has been cited by:

    1. Ye Ding, XiaoJian Zhang, Han Ding, A Legendre Polynomials Based Method for Stability Analysis of Milling Processes, 2015, 137, 1048-9002, 10.1115/1.4029460
    2. Shiming Duan, Jun Ni, A Galip Ulsoy, Decay function estimation for linear time delay systems via the Lambert W function, 2012, 18, 1077-5463, 1462, 10.1177/1077546311408168
    3. S. Yi, P.W. Nelson, A.G. Ulsoy, Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems, 2010, 16, 1077-5463, 961, 10.1177/1077546309341102
    4. Tao Huang, Xiaoming Zhang, Xiaojian Zhang, Han Ding, An efficient linear approximation of acceleration method for milling stability prediction, 2013, 74, 08906955, 56, 10.1016/j.ijmachtools.2013.07.006
    5. Xiao Jian Zhang, Cai Hua Xiong, Ye Ding, Ming Jun Feng, You Lun Xiong, Milling stability analysis with simultaneously considering the structural mode coupling effect and regenerative effect, 2012, 53, 08906955, 127, 10.1016/j.ijmachtools.2011.10.004
    6. Sun Yi, Shiming Duan, Patrick W. Nelson, A. Galip Ulsoy, 2014, Chapter 20, 978-3-319-01694-8, 271, 10.1007/978-3-319-01695-5_20
    7. Ye Ding, Limin Zhu, Xiaojian Zhang, Han Ding, Response sensitivity analysis of the dynamic milling process based on the numerical integration method, 2012, 25, 1000-9345, 940, 10.3901/CJME.2012.05.940
    8. Patrick W. Nelson, A. Galip Ulsoy, 2008, Robust control and time-domain specifications for systems of delay differential equations via eigenvalue assignment, 978-1-4244-2078-0, 4928, 10.1109/ACC.2008.4587275
    9. G. Urbikain, L.N. López de Lacalle, F.J. Campa, A. Fernández, A. Elías, Stability prediction in straight turning of a flexible workpiece by collocation method, 2012, 54-55, 08906955, 73, 10.1016/j.ijmachtools.2011.11.008
    10. Qizhi Xie, Qichang Zhang, Stability predictions of milling with variable spindle speed using an improved semi-discretization method, 2012, 85, 03784754, 78, 10.1016/j.matcom.2012.09.017
    11. Darko Veberič, Lambert W function for applications in physics, 2012, 183, 00104655, 2622, 10.1016/j.cpc.2012.07.008
    12. Sun Yi, A. Galip Ulsoy, Patrick W. Nelson, Design of observer-based feedback control for time-delay systems with application to automotive powertrain control, 2010, 347, 00160032, 358, 10.1016/j.jfranklin.2009.09.001
    13. Aude Maignan, Tony C. Scott, Fleshing out the generalized Lambert W function , 2016, 50, 1932-2240, 45, 10.1145/2992274.2992275
    14. Sen Hu, Xianzhen Huang, Yimin Zhang, Chunmei Lv, Reliability Analysis of the Chatter Stability during Milling Using a Neural Network, 2016, 2016, 1687-5966, 1, 10.1155/2016/5259821
    15. Sun Yi, Patrick W. Nelson, A. Galip Ulsoy, Controllability and Observability of Systems of Linear Delay Differential Equations Via the Matrix Lambert W Function, 2008, 53, 0018-9286, 854, 10.1109/TAC.2008.919549
    16. C.G. Ozoegwu, S.N. Omenyi, S.M. Ofochebe, Hyper-third order full-discretization methods in milling stability prediction, 2015, 92, 08906955, 1, 10.1016/j.ijmachtools.2015.02.007
    17. Sun Yi, Patrick W. Nelson, A. Galip Ulsoy, Robust Control and Time-Domain Specifications for Systems of Delay Differential Equations via Eigenvalue Assignment, 2010, 132, 0022-0434, 10.1115/1.4001339
    18. Nouceyba Abdelkrim, Adel Tellili, Mohamed Naceur Abdelkrim, 2010, Composite control of a delayed singularly perturbed system by using Lambert-W function, 978-1-4244-7532-2, 1, 10.1109/SSD.2010.5585577
    19. Shujie Lv, Yang Zhao, Jerzy Baranowski, Stability of Milling Process with Variable Spindle Speed Using Runge–Kutta-Based Complete Method, 2021, 2021, 1563-5147, 1, 10.1155/2021/6672513
    20. Yong Wang, Taiyong Wang, Zhiqiang Yu, Yue Zhang, Yulong Wang, Hengli Liu, Chatter Prediction for Variable Pitch and Variable Helix Milling, 2015, 2015, 1070-9622, 1, 10.1155/2015/419172
    21. Francesco Sorrentino, Identification of delays and discontinuity points of unknown systems by using synchronization of chaos, 2010, 81, 1539-3755, 10.1103/PhysRevE.81.066218
    22. Dibakar Bandopadhya, Application of Lambert W-function for solving time-delayed response of smart material actuator under alternating electric potential, 2016, 230, 0954-4062, 2135, 10.1177/0954406215590640
    23. Hossein Moradian, Solmaz S. Kia, 2018, A Study on Rate of Convergence Increase Due to Time Delay for a Class of Linear Systems, 978-1-5386-1395-5, 5433, 10.1109/CDC.2018.8619497
    24. Aude Maignan, Tony C. Scott, Fleshing out the Generalized Lambert W Function, 2016, 50, 19322240, 45, 10.1145/3003653.3003662
    25. A. Galip Ulsoy, Rita Gitik, On the Convergence of the Matrix Lambert W Approach to Solution of Systems of Delay Differential Equations, 2020, 142, 0022-0434, 10.1115/1.4045368
    26. Massimiliano Fasi, Nicholas J. Higham, Bruno Iannazzo, An Algorithm for the Matrix Lambert W Function, 2015, 36, 0895-4798, 669, 10.1137/140997610
    27. Y.N. Kyrychko, S.J. Hogan, On the Use of Delay Equations in Engineering Applications, 2010, 16, 1077-5463, 943, 10.1177/1077546309341100
    28. Dževad Belkić, All the trinomial roots, their powers and logarithms from the Lambert series, Bell polynomials and Fox–Wright function: illustration for genome multiplicity in survival of irradiated cells, 2019, 57, 0259-9791, 59, 10.1007/s10910-018-0985-3
    29. XiaoJian Zhang, CaiHua Xiong, Ye Ding, Han Ding, Prediction of chatter stability in high speed milling using the numerical differentiation method, 2017, 89, 0268-3768, 2535, 10.1007/s00170-016-8708-z
    30. Yiming Che, Changqing Cheng, Uncertainty quantification in stability analysis of chaotic systems with discrete delays, 2018, 116, 09600779, 208, 10.1016/j.chaos.2018.08.024
    31. Sun Yi, Patrick W. Nelson, A. Galip Ulsoy, Analysis and Control of Time Delayed Systems via the Lambert W Function, 2008, 41, 14746670, 13414, 10.3182/20080706-5-KR-1001.02272
    32. Soheil Ganjefar, Mohammad Hadi Sarajchi, Seyed Mahmoud Hoseini, Zhufeng Shao, Lambert W Function Controller Design for Teleoperation Systems, 2019, 20, 2234-7593, 101, 10.1007/s12541-019-00018-y
    33. Ye Ding, LiMin Zhu, XiaoJian Zhang, Han Ding, Numerical Integration Method for Prediction of Milling Stability, 2011, 133, 1087-1357, 10.1115/1.4004136
    34. D. Tian, R. Sipahi, Creating two disjoint stability intervals along the delay axis via controller design: a class of LTI SISO systems, 2017, 5, 2195-268X, 1156, 10.1007/s40435-016-0266-6
    35. Jussi Lehtonen, Mark Rees, The Lambert W function in ecological and evolutionary models, 2016, 7, 2041-210X, 1110, 10.1111/2041-210X.12568
    36. S. Coombes, Neuronal Networks with Gap Junctions: A Study of Piecewise Linear Planar Neuron Models, 2008, 7, 1536-0040, 1101, 10.1137/070707579
    37. Stability and Stabilization of Systems with Time Delay, 2011, 31, 1066-033X, 38, 10.1109/MCS.2010.939135
    38. Sourabh Mittal, Archan Mukhopadhyay, Sagar Chakraborty, Evolutionary dynamics of the delayed replicator-mutator equation: Limit cycle and cooperation, 2020, 101, 2470-0045, 10.1103/PhysRevE.101.042410
    39. Patrick W. Nelson, A. Galip Ulsoy, 2011, PI control of first order time-delay systems via eigenvalue assignment, 978-1-4577-0081-1, 4213, 10.1109/ACC.2011.5990806
    40. Seong Hyun Park, John D. Griffiths, André Longtin, Jérémie Lefebvre, Persistent Entrainment in Non-linear Neural Networks With Memory, 2018, 4, 2297-4687, 10.3389/fams.2018.00031
    41. N Abdelkrim, A Tettili, M N Abdelkrim, 2011, Actuator fault tolerant control for delayed systems, 978-1-4577-0413-0, 1, 10.1109/SSD.2011.5767409
    42. Chigbogu Ozoegwu, Sunday Ofochebe, Chinedu Ezugwu, Time minimization of pocketing by zigzag passes along stability limit, 2016, 86, 0268-3768, 581, 10.1007/s00170-015-8108-9
    43. Ye Ding, LiMin Zhu, XiaoJian Zhang, Han Ding, On a Numerical Method for Simultaneous Prediction of Stability and Surface Location Error in Low Radial Immersion Milling, 2011, 133, 0022-0434, 10.1115/1.4003374
    44. Niraj Choudhary, Janardhanan Sivaramakrishnan, Indra Narayan Kar, Analysis of Multidimensional Time Delay Systems Using Lambert W Function, 2017, 139, 0022-0434, 10.1115/1.4036874
    45. Patrick W. Nelson, A. Galip Ulsoy, Proportional-Integral Control of First-Order Time-Delay Systems via Eigenvalue Assignment, 2013, 21, 1063-6536, 1586, 10.1109/TCST.2012.2216267
    46. Sun Yi, Patrick W. Nelson, A. Galip Ulsoy, 2007, Controllability and Observability of Systems of Linear Delay Differential Equations via the Matrix Lambert W Function, 1-4244-0988-8, 5631, 10.1109/ACC.2007.4282376
    47. Josef Rebenda, Zdeněk Šmarda, Stability of a Functional Differential System with a Finite Number of Delays, 2013, 2013, 1085-3375, 1, 10.1155/2013/853134
    48. Yiming Che, Jiachen Liu, Changqing Cheng, Multi-fidelity modeling in sequential design for stability identification in dynamic time-delay systems, 2019, 29, 1054-1500, 093105, 10.1063/1.5097934
    49. Ye Ding, LiMin Zhu, XiaoJian Zhang, Han Ding, Second-order full-discretization method for milling stability prediction, 2010, 50, 08906955, 926, 10.1016/j.ijmachtools.2010.05.005
    50. Han Ding, Ye Ding, LiMin Zhu, On time-domain methods for milling stability analysis, 2012, 57, 1001-6538, 4336, 10.1007/s11434-012-5499-y
    51. JunYu Li, Li Zhang, ZaiHua Wang, A simple algorithm for testing the stability of periodic solutions of some nonlinear oscillators with large time delay, 2011, 54, 1674-7321, 2033, 10.1007/s11431-011-4487-9
    52. Bokman Lim, Jusuk Lee, Junwon Jang, Kyungrock Kim, Young Jin Park, Keehong Seo, Youngbo Shim, Delayed Output Feedback Control for Gait Assistance With a Robotic Hip Exoskeleton, 2019, 35, 1552-3098, 1055, 10.1109/TRO.2019.2913318
    53. Umar Farooq, Hassan Khan, Dumitru Baleanu, Muhammad Arif, Numerical solutions of fractional delay differential equations using Chebyshev wavelet method, 2019, 38, 2238-3603, 10.1007/s40314-019-0953-y
    54. Shinya Miyajima, Verified computation for the matrix Lambert W function, 2019, 362, 00963003, 124555, 10.1016/j.amc.2019.06.069
    55. Gang Jin, Xinyu Zhang, Kaifei Zhang, Hua Li, Zhanjie Li, Jianxin Han, Houjun Qi, Stability Analysis Method for Periodic Delay Differential Equations with Multiple Distributed and Time-Varying Delays, 2020, 2020, 1024-123X, 1, 10.1155/2020/1982363
    56. Patrick Nelson, 2013, Chapter 272, 978-1-4419-9862-0, 637, 10.1007/978-1-4419-9863-7_272
    57. Shiming Duan, Jun Ni, A. Galip Ulsoy, 2010, A Lambert W function approach for decay function estimation in linear time delay systems, 978-1-4244-7745-6, 4972, 10.1109/CDC.2010.5717877
    58. Tao Huang, Xiaoming Zhang, Han Ding, A novel approach with smallest transition matrix for milling stability prediction, 2017, 90, 0924-090X, 95, 10.1007/s11071-017-3649-0
    59. Toshio Fukushima, Precise and fast computation of LambertW-functions without transcendental function evaluations, 2013, 244, 03770427, 77, 10.1016/j.cam.2012.11.021
    60. An Wang, Wuyin Jin, Influence of Feed Velocity on Nonlinear Dynamics of Turning Process, 2021, 2234-7593, 10.1007/s12541-021-00516-y
    61. Gang Jin, Wenshuo Li, Jianxin Han, Zhanjie Li, Gaofeng Hu, Guangxing Sun, An Updated Method for Stability Analysis of Milling Process with Multiple and Distributed Time Delays and Its Application, 2021, 11, 2076-3417, 4203, 10.3390/app11094203
    62. Munyaradzi Innocent Mupona, Ioan Călin Roșca, Modal analysis of a milling dynamometer considered as 1DOF system, 2022, 46, 2345-0533, 54, 10.21595/vp.2022.23009
    63. Amal Khalaf Haydar, Solving Parabolic Partial Delay Differential Equations Using The Explicit Method And Higher Order Differences, 2013, 1, 2518-0010, 47, 10.31642/JoKMC/2018/010707
    64. Chunjing Liu, Dunbing Tang, Xingqiang Chen, Guohua Ding, An efficient and precise stability analysis method for milling process, 2024, 0268-3768, 10.1007/s00170-024-13101-0
    65. Hao Zhang, Sixu Li, Zihao Li, Mohammad Anis, Dominique Lord, Yang Zhou, Why anticipatory sensing matters in commercial ACC systems under cut-in scenarios: A perspective from stochastic safety analysis, 2025, 218, 00014575, 108064, 10.1016/j.aap.2025.108064
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7383) PDF downloads(896) Cited by(4)

Article outline

Figures and Tables

Figures(12)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog