Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Implication of sexual transmission of Zika on dengue and Zika outbreaks

1 Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, ON, M3J 1P3, Canada
2 School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, P.R. China

Dengue and Zika viruses belong to the same Flavivirus family and usually cocirculate within the same area. Both the viruses can be transmitted by a common mosquito species Aedes aegypti. However, non-vector-borne transmission of Zika virus, such as sexual transmission and vertical transmission, has been reported in recent studies. In this study, we develop a dengue-Zika coinfection model with a particular focus on the impact of Zika sexual transmission to the transmission dynamics of both dengue and Zika. Our sensitivity analysis shows that Zika sexual transmission has a significant influence on the Zika basic reproduction number. Consequently, Zika sexual transmission can lead Zika to be endemic within an area where vector-borne transmission only cannot. Theoretically, we prove that the disease-free equilibrium for dengue only model is always globally stable if the dengue basic reproduction number is less than 1. However, our cascade analysis and numerical simulations show that increasing the sexual transmission coefficient of Zika can also result in the persistence of dengue even though the dengue basic reproduction number is less than 1, due to the cocirculation of dengue and Zika and the antibody-dependent enhancement of Zika infection for dengue infection. Our numerical analyses also show that the endemic levels of Zika increase as the Zika sexual transmission probability increases.
  Article Metrics

Keywords Zika; Dengue; coinfection; sexual transmission; antibody dependent enhancement; cascade effect

Citation: Biao Tang, Weike Zhou, Yanni Xiao, Jianhong Wu. Implication of sexual transmission of Zika on dengue and Zika outbreaks. Mathematical Biosciences and Engineering, 2019, 16(5): 5092-5113. doi: 10.3934/mbe.2019256


  • 1. D. J. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microbiol. Rev., 11 (1998), 480–496.
  • 2. S. B. Halstead, Dengue, The Lancet, 370 (2007), 1644–1652.
  • 3. WHO, Dengue and severe dengue, Fact sheet No. 117, Available from: http://www.who.int/mediacentre/factsheets/fs117/en/(accessed 2 February 2018).
  • 4. A. Gulland, WHO urges countries in dengue belt to look out for Zika, BMJ, 352 (2016), i595.
  • 5. G. W. Dick, S. F. Kitchen and A. J. Haddow, Zika virus (I). Isolations and serological specificity, Trans. R. Soc. Trop. Med. Hyg., 46 (1952), 509–520.
  • 6. A. J. Johnson, O. L. Kosoy, J. J. Laven, et al., Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007, Emerg. Infect. Dis., 14 (2008), 1232–1239.
  • 7. V. M. Cao-Lormeau, C. Roche, A. Teissier, et al., Zika virus, French Polynesia, South Pacific, 2013, Emerg. Infect. Dis., 20 (2014), 1085–1086.
  • 8. G. S. Campos, A. C. Bandeira and S. I. Sardi, Zika virus outbreak, Bahia, Brazil, Emerg. Infect. Dis., 21 (2015), 1885–1886.
  • 9. WHO, Zika situation report, Available from: http://www.who.int/emergencies/zika-virus/situation-report/20-january-2017/en/(accessed 20 January 2017).
  • 10. I. Kautner, M. J. Robinson and U. Kuhnle, Dengue virus infection: Epidemiology, pathogenesis, clinical presentation, diagnosis, and prevention, J. Pediatr., 131 (1997), 516–524.
  • 11. B. Atkinson, P. Hearn, B. Afrough, et al., Detection of Zika virus in semen, Emerg. Infect. Dis., 22 (2016), 940.
  • 12. A. C. Gourinat, O. O'Connor, E. Calvez, et al., Detection of Zika virus in urine, Emerg. Infect. Dis., 21 (2015), 84–86.
  • 13. D. Musso, C. Roche, T. X. Nhan, et al., Detection of Zika virus in saliva, J. Clin. Virol., 68 (2015), 53–55.
  • 14. J. Moreira, T. M. Peixoto, A. M. Siqueira, et al., Sexually acquired Zika virus: a systematic review, Clin. Microbiol. Infec. 23 (2017), 296–305.
  • 15. A. Davidson, S. Slavinski, K. Komoto, et al., Suspected female-tomale sexual transmission of Zika virus–New York City, 2016, MMWR Morb Mortal Wkly Rep., 65 (2016), 716–717.
  • 16. D. Gao, Y. Lou, D. He, et al., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis, Sci. Rep., 6 (2016), 28070.
  • 17. F. B. Agusto, S. Bewick and W. F. Fagan, Mathematical model for Zika virus dynamics with sexual transmission route, Ecol. Complex., 29 (2017), 61–81.
  • 18. F. Brauer, C. Castillo-Chavez, A. Mubayi, et al., Some models for epidemics of vector-transmitted diseases, Inf. Dis. Model., 1 (2016), 79–87.
  • 19. D. Baca-Carrasco and J. X. Velasco-Hernández, Sex, mosquitoes and epidemics: an evaluation of Zika disease dynamics, Bull. Math. Biol., 78 (2016), 2228–2242.
  • 20. C. R. Kim, M. Counotte and K. Bernstein, Investigating the sexual transmission of Zika virus, Lancet Glob. Healthy, 6 (2018), e24–e25.
  • 21. O. Maxian, A. Neufeld, E. J. Talis, et al., Childs Zika virus dynamics: When does sexual transmission matter? Epidemics, 21 (2017), 48–55.
  • 22. S. K. Sasmal, I. Ghosh, A. Huppert, et al., Modeling the Spread of Zika Virus in a Stage-Structured Population: Effect of Sexual Transmission, Bull. Math. Biol., 80 (2018), 3038–3067.
  • 23. C. M. Saad-Roy, J. Ma and P. van den Driessche, The effect of sexual transmission on Zika virus dynamics, J. Math. Biol., 77 (2018), 1917–1941.
  • 24. C. M. Saad-Roy, P. van den Driessche and J. Ma, Estimation of Zika virus prevalence by appearance of microcephaly, BMC Infect. Dis., 16 (2016), 754.
  • 25. S. Towers, F. Brauer, C. Castillo-Chavez, et al., Estimate of the reproduction number of the 2015 Zika virus outbreakin Barranquilla, Colombia, and estimation of the relative role of sexual transmission, Epidemics, 17 (2016), 50–55.
  • 26. Y. A. Terefe, H. Gaff, M. Kamga, et al., Mathematics of a model for Zika transmission dynamics, Theor. Biosci., 137 (2018), 209–218.
  • 27. A. Allard, B. M. Althouse and L. Hébert-Dufresne, The risk of sustained sexual transmission of Zika is underestimated, PLoS Pathog., 13 (2017), e1006633.
  • 28. M. Dupont-Rouzeyrol, O. O'Connor, E. Calvez, et al., Co-infection with Zika and Dengue Viruses in 2 Patients, New Caledonia, 2014, Emerg. Infect. Dis., 95 (2015), 381–382.
  • 29. R. Pessôa, J. V. Patriota, M. D. L. de Souza, et al., Investigation Into an Outbreak of Dengue-like Illness in Pernambuco, Brazil, Revealed a Cocirculation of Zika, Chikungunya, and Dengue Virus Type 1,Medicine, 95 (2016), e3201.
  • 30. C. S. Vinodkumar, N. K. Kalapannavar, K. G. Basavarajappa, et al., Episode of coexisting infections with multiple dengue virus serotypes in central Karnataka, India, J. Infect. Public Heal., 6 (2013), 302–306.
  • 31. B. Tang, Y. Xiao and J. Wu, Implication of vaccination against dengue for Zika outbreak, Sci. Rep., 6 (2016), 35623.
  • 32. J. J. Tewa, J. L. Dimi and S. Bowong, Lyapunov functions for a dengue disease transmission model, Chaos, Solitons & Fractals, 39 (2009), 936–941.
  • 33. M. Andraud, N. Hens, C. Marais, et al., Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, PLoS One, 7 (2012), e49085.
  • 34. B. Adams, E. C. Holmes, C. Zhang, et al., Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok, Proc. Natl. Acad. Sci. USA, 103 (2006), 14234–14239.
  • 35. M. Recker, K. B. Blyuss, C. P. Simmons, et al., Immunological serotype interactions and their effect on the epidemiological pattern of dengue, Proc. R. Soc. Lond. B. Biol. Sci., 276 (2009), 2541–2548.
  • 36. H. J. Wearing and P. Rohani, Ecological and immunological determinants of dengue epidemics, Proc. Natl. Acad. Sci. USA, 103 (2006), 11802–11807.
  • 37. O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, Chichester, 2000.
  • 38. P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
  • 39. Y. N. Xiao, T. T. Zhao and S. Y. Tang, Dynamics of an infectious disease with media/psychology induced non-sooth incidence, Math. Biosci. Eng., 10 (2013), 445–461.
  • 40. L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), 131–151.
  • 41. D. Gao, T. C. Porco and S. G. Ruan, Coinfection dynamics of two diseases in a single host population, J. Math. Anal. Appl., 442 (2016), 171–188.
  • 42. D. A. Cummings, I. B. Schwartz, L. Billings, et al., Dynamic effects of antibody-dependent enhancement on the fitness of viruses, Proc. Natl. Acad. Sci. USA, 102 (2005), 15259–15264.
  • 43. W. Dejnirattisai, A. Jumnainsong, N. Onsirisakul, et al., Cross-reacting antibodies enhance dengue virus infection in humans, Science, 328 (2010), 745–748.
  • 44. N. Ferguson, R. Anderson and S. Gupta, The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens, Proc. Natl. Acad. Sci. USA, 96 (1999), 790–794.
  • 45. S. B. Halstead, Pathogenesis of dengue: challenges to molecular biology, Science, 239 (1988), 476–481.
  • 46. A. S. Charles and R. C. Christofferson, Utility of a dengue-derived monoclonal antibody to enhance Zika infection in vitro, PLoS Curr., 8 (2016).
  • 47. W. Dejnirattisai, P. Supasa, W. Wongwiwat, et al., Dengue virus sero-cross-reactivity drives antibody dependent enhancement of infection with zika virus, Nat. Immunol., 17 (2016), 1102–1108.
  • 48. L. Priyamvada, L. Priyamvada, K. M. Quicke, et al., Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus, Proc. Natl. Acad. Sci. USA, 113 (2016), 7852–7857.
  • 49. A. B. Kawiecki and R. C. Christofferson, Zika Virus-Induced Antibody Response Enhances Dengue Virus Serotype 2 Replication In Vitro, J. Infect. Dis., 214 (2016), 1357–1360.
  • 50. S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, Int. Stat. Rev., 62 (1994), 229–243.
  • 51. S. Marino, B. Ian, I. B. Hogue, et al., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196.
  • 52. S. Y. Tang, Y. N. Xiao, Y. Lin, et al., Campus quarantine (Fengxiao) for curbing emergent infectious diseases: Lessons from mitigating A/H1N1 in Xi'an, China, J. Theor. Biol., 295 (2012), 47–58.
  • 53. M. Besnard, S. Lastère, A. Teissier, et al., Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014, Euro. Surveill., 19 (2014), 20751.
  • 54. B. G. S. A. Pradeep and W. Ma, Global stability of a delayed mosquito-transmitted disease model with stage structure, Electron. J. Differ. Equ., 2015 (2015), 1–19.
  • 55. H. Wei, X. Li and M. Martcheva, An epidemic model of a vector-borne disease with direct transmission and time delay, J. Math. Anal. Appl., 342 (2008) 895–908.


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved