
Mathematical Biosciences and Engineering, 2019, 16(5): 40074035. doi: 10.3934/mbe.2019198.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Models for liquid relative permeability of cementitious porous media at elevated temperature: comparisons and discussions
1 School of Civil and Transportation Engineering, South China University of Technology, Wushan Road 381, 510641 Guangzhou, P.R.China
2 Department of Geotechnical Engineering, Tongji University, Siping Road 1239, 200092 Shanghai, P.R.China
3 State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Siping Road 1239, 200092 Shanghai, P.R.China
4 School of Civil and Transportation Engineering, Hebei University of Technology, Xiping Road 5340, 300401 Tianjin, P.R.China
Received: , Accepted: , Published:
Special Issues: Mathematical Methods in Civil Engineering
Keywords: fireloaded cementitious material; relative permeability; multiphase flow in porous media; coupled multifield analysis; numerical simulations
Citation: Pan Zeng, Linlong Mu, Yiming Zhang. Models for liquid relative permeability of cementitious porous media at elevated temperature: comparisons and discussions. Mathematical Biosciences and Engineering, 2019, 16(5): 40074035. doi: 10.3934/mbe.2019198
References:
 1. G. van der Heijden, L. Pel and O. Adan, Fire spalling of concrete, as studied by NMR, Cement Concrete Res., 42 (2012), 265–271.
 2. Z. Yan, Q. Guo and H. Zhu, Fullscale experiments on fire characteristics of road tunnel at high altitude, Tunn. Undergr. Sp. Tech., 66 (2017), 134–146.
 3. L. Lu, J. Qiu, Y. Yuan, et al., Largescale test as the basis of investigating the fireresistance of underground RC substructures, Eng. Struct., 178 (2019), 12–23.
 4. E. Beneberu and N. Yazdani, Residual strength of CFRP strengthened prestressed concrete bridge girders after hydrocarbon fire exposure, Eng. Struct., 184 (2019), 1–14.
 5. J. C. Mindeguia, P. Pimienta, A. Noumowé, et al., Temperature, pore pressure and mass variation of concrete subjected to high temperatureExperimental and numerical discussion on spalling risk,Cement Concrete Res., 40 (2010), 477–487.
 6. R. Jansson and L. Boström, Fire spallingthe moisture effect, in Proceedings of 1st International Workshop on Concrete Spalling due to Fire Exposure (F. Dehn and E. Koenders, eds.), (2009), 120–129.
 7. G. van der Heijden, R. van Bijnen, L. Pel, et al., Moisture transport in heated concrete, as studied by NMR, and its consequences for fire spalling, Cement Concrete Res., 37 (2007), 894–901.
 8. N. Toropovs, F. Lo Monte, M. Wyrzykowski, et al., Realtime measurements of temperature, pressure and moisture profiles in HighPerformance Concrete exposed to high temperatures during neutron radiography imaging, Cement Concrete Res., 68 (2015), 166–173.
 9. D. Dauti, S. Dal Pont, B. Weber, et al., Modeling concrete exposed to high temperature: Impact of dehydration and retention curves on moisture migration, Int. J. Numer. Anal. Meth., 42 (2018), 1516–1530.
 10. H. Zhang and C. Davie, A numerical investigation of the influence of pore pressures and thermally induced stresses for spalling of concrete exposed to elevated temperatures, Fire Safety J., 59 (2013), 102–110.
 11. A. Jefferson, R. Tenchev, A. Chitez, et al., Finite element crack width computations with a thermohygromechanicalhydration model for concrete structures, Eur. J. Environ. Civ. En., 18 (2014), 793–813.
 12. F. Lydon, The relative permeability of concrete using nitrogen gas, Constr. Build. Mater., 7 (1993), 213–220.
 13. J. MonlouisBonnaire, J. Verdier and B. Perrin, Prediction of the relative permeability to gas flow of cementbased materials, Cement Concrete Res., 34 (2004), 737–744.
 14. V. BaroghelBouny, Water vapour sorption experiments on hardened cementitious materials. Part II: Essential tool for assessment of transport properties and for durability prediction, Cement Concrete Res., 37 (2007), 438–454.
 15. W. Chen, J. Liu, F. Brue, et al., Water retention and gas relative permeability of two industrial concretes, Cement Concrete Res., 42 (2012), 1001–1013.
 16. Y. Mualem, A new model for predicting the hydraulic conductivity of unsaturated porous media,Water Resour. Res., 12 (1976), 513–522.
 17. L. Luckner, M. van Genuchten and D. Nielsen, A consistent set of parametric models for the twophaseflow of immiscible fluids in the subsurface, Water Resour. Res., 25 (1989), 2187–2193.
 18. D. Gawin, F. Pesavento and B. Schrefler, Towards prediction of the thermal spalling risk through a multiphase porous media model of concrete, Comput. Method. Appl. M., 195 (2006), 5707–5729.
 19. D. Gawin, F. Pesavento and A. G. Castells, On reliable predicting risk and nature of thermal spalling in heated concrete, Arch. Civ. Mech. Eng., 18 (2018), 1219–1227.
 20. J. Y. Wu and V. P. Nguyen, A length scale insensitive phasefield damage model for brittle fracture,J. Mech. Phys. Solids, 119 (2018), 20–42.
 21. S. Saloustros, L. Pelà, M. Cervera, et al., Finite element modelling of internal and multiple localized cracks, Comput. Mech., 59 (2017), 299–316.
 22. M. Nikolić, X. N. Do, A. Ibrahimbegovic, et al., Crack propagation in dynamics by embedded strong discontinuity approach: Enhanced solid versus discrete lattice model, Comput. Method. Appl. M., 340 (2018), 480–499.
 23. Y. Zhang, R. Lackner, M. Zeiml, et al., Strong discontinuity embedded approach with standard SOS formulation: Element formulation, energybased cracktracking strategy, and validations,Comput. Method. Appl. M., 287 (2015), 335–366.
 24. Y. Zhang and X. Zhuang, Cracking elements: a selfpropagating strong discontinuity embedded approach for quasibrittle fracture, Finite Elem. Anal. Des., 144 (2018), 84–100.
 25. Y. Zhang and X. Zhuang, Cracking elements method for dynamic brittle fracture, Theor. Appl. Fract. Mec., 102 (2019), 1–9.
 26. X. Zhuang, C. Augarde and K. Mathisen, Fracture modeling using meshless methods and level sets in 3D: framework and modeling, Int. J. Numer. Meth. Eng., 92 (2012), 969–998.
 27. C. Gallé and J. Sercombe, Permeability and pore structure evolution of silicocalcareous and hematite highstrength concretes submitted to high temperatures, Mater. Struct., 34 (2001), 619–628.
 28. J. Bošnjak, J. Ožbolt and R. Hahn, Permeability measurement on high strength concrete without and with polypropylene fibers at elevated temperatures using a new test setup, Cement Concrete Res., 53 (2013), 104–111.
 29. P. Kalifa, G. Chéné and C. Gallé, Hightemperature behaviour of HPC with polypropylene fibres: From spalling to microstructure, Cement Concrete Res., 31 (2001), 1487–1499.
 30. M. Zeiml, D. Leithner, R. Lackner, et al., How do polypropylene fibers improve the spalling behavior of insitu concrete, Cement Concrete Res., 36 (2006), 929–942.
 31. M. Zeiml, R. Lackner, D. Leithner, et al., Identification of residual gastransport properties of concrete subjected to high temperatures, Cement Concrete Res., 38 (2008), 699–716.
 32. F. Pesavento, B. A. Schrefler and G. Sciumè, Multiphase flow in deforming porous media: A review, Arch. Comput. Method. E., 24 (2017), 423–448.
 33. B. A. Schrefler, F. Pesavento and D. Gawin, Multiscale/Multiphysics Model for Concrete, Dordrecht: Springer Netherlands. (2011), 381–404.
 34. M. van Genuchten, A closedform equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44 (1980), 892–898.
 35. V. BaroghelBouny, Water vapour sorption experiments on hardened cementitious materials. Part I: Essential tool for analysis of hygral behaviour and its relation to pore structure, Cement Concrete Res., 37 (2007), 414–437.
 36. Y. Zhang, M. Zeiml, M. Maier, et al., Fast assessing spalling risk of tunnel linings under RABT fire: From a coupled thermohydrochemomechanical model towards an estimation method, Eng. Struct., 142 (2017), 1–19.
 37. F. Pesavento, B. A. Schrefler and G. Sciumè, Multiphase flow in deforming porous media: A review, Arch. Comput. Method. E., 24 (2017), 423–448.
 38. Z. P. Bažant and M. Z. Bažant, Theory of sorption hysteresis in nanoporous solids: Part i: Snapthrough instabilities, J. Mech. Phys. Solids, 60 (2012), 1644–1659.
 39. N. Lu, T. H. Kim, S. Sture, et al., Tensile strength of unsaturated sand, J. Eng. Mech. (ASCE), 135 (2009), 1410–1419.
 40. J. P. Wang, E. Gallo, B. Franois, et al., Capillary force and rupture of funicular liquid bridges between three spherical bodies, Powder Technol., 305 (2017), 89–98.
 41. V. BaroghelBouny, M. Thiery, F. Barberon, et al., Assessment of transport properties of cementi tious materials, Revue Européenne de Génie Civil, 11 (2007), 671–696.
 42. S. Poyet, Determination of the intrinsic permeability to water of cementitious materials: Influence of the water retention curve, Cement Concrete Comp., 35 (2013), 127–135.
 43. B. Valentini, Y. Theiner, M. Aschaber, et al., Singlephase and multiphase modeling of concrete structures, Eng. Struct., 47 (2013), 25–34.
 44. C. Davie, C. Pearce and N. Bi´ canić, Fully coupled, hygrothermomechanical sensitivity analysis of a prestressed concrete pressure vessel, Eng. Struct., 59 (2014), 536–551.
 45. M. Mainguy, O. Coussy and V. BaroghelBouny, Role of air pressure in drying of weakly permeable materials, J. Eng. Mech. (ASCE), 127 (2001), 582–592.
 46. G. Pickett, Modification of the brunaueremmettteller theory of multimolecular adsorption, J. Am. Chem. Soc., 67 (1945), 1958–1962.
 47. G. Wardeh and B. Perrin, Relative permeabilities of cementbased materials: Influence of the tortuosity function, J. Build. Phys., 30 (2006), 39–57.
 48. C. Davie, C. Pearce and Bi´ cani´ c, Aspects of permeability in modelling of concrete exposed to high temperatures, Transport Porous Med., 95 (2012), 627–646.
 49. C. Davie, C. Pearce, K. Kukla, et al., Modelling of transport processes in concrete exposed to elevated temperaturesan alternative formulation for sorption isotherms, Cement Concrete Res.,106 (2018), 144–154.
 50. D. Gawin and F. Pesavento, An overview of modeling cement based materials at elevated temperatures with mechanics of multiphase porous media, Fire Technol., 48 (2012), 753–793.
 51. F. Pesavento, M. Pachera, P. Brunello, et al., Concrete exposed to fire: from fire scenario to structural response, Key Eng. Mater., 711 (2016), 556–563.
 52. B. Schrefler, R. Codina, F. Pesavento, et al., Thermal coupling of fluid flow and structural response of a tunnel induced by fire, Int. J. Numer. Meth. Eng., 87 (2010), 361–385.
 53. H. Ranaivomanana, J. Verdier, A. Sellier, et al., Toward a better comprehension and modeling of hysteresis cycles in the water sorptiondesorption process for cement based materials, Cement Concrete Res., 41 (2011), 817–827.
 54. T. Ishida, K. Maekawa and T. Kishi, Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history, Cement Concrete Res., 4 (2007), 565–578.
 55. V. BaroghelBouny, M. Mainguy, T. Lassabatere, et al., Characterization and identification of equilibrium and transfer moisture properties for ordinary and highperformance cementitious materials, Cement Concrete Res., 29 (1999), 225–1238.
 56. H. Ranaivomanana, J. Verdier, A. Sellier, et al., Prediction of relative permeabilities and water vapor diffusion reduction factor for cementbased materials, Cement Concrete Res., 48 (2013), 53–63.
 57. M. C. Chaparro, M. W. Saaltink and M. V. Villar, Characterization of concrete by calibrating thermohydraulic multiphase flow models, Transport Porous Med., 109 (2015), 147–167.
 58. D. Gawin and B. Schrefler, Thermohydromechanical analysis of partially saturated porous materials, Eng. Computation., 13 (1996), 113–143.
 59. B. Schrefler, C. Majorana, G. Khoury, et al., Thermohydromechanical modelling of high performance concrete at high temperatures, Eng. Computation., 19 (2002), 787–819.
 60. Y. Zhang, C. Pichler, Y. Yuan, et al., Micromechanicsbased multifield framework for earlyage concrete, Eng. Struct., 47 (2013), 16–24.
 61. Y. Zhang, M. Zeiml, C. Pichler, et al., Modelbased risk assessment of concrete spalling in tunnel linings under fire loading, Eng. Struct., 77 (2014), 207–215.
 62. D. Gawin, F. Pesavento and B. Schrefler, What physical phenomena can be neglected when modelling concrete at high temperature? A comparative study. Part 1: Physical phenomena and mathematical model, Int. J. Solids Struct., 48 (2011), 1927–1944.
 63. D. Gawin, F. Pesavento and B. Schrefler, What physical phenomena can be neglected when modelling concrete at high temperature? A comparative study. Part 2: Comparison between models,Int. J. Solids Struct., 48 (2011), 1945–1961.
 64. Y. Zhang, Multislicing strategy for the threedimensional discontinuity layout optimization (3D DLO), Int. J. Numer. Anal. Met., 41 (2017), 488–507.
 65. Y. Zhang and X. Zhuang, A softeninghealing law for selfhealing quasibrittle materials: analyzing with strong discontinuity embedded approach, Eng. Fract. Mech., 192 (2018), 290–306.
 66. Y. Zhang and X. Zhuang, Stability analysis of shotcrete supported crown of NATM tunnels with discontinuity layout optimization, Int. J. Numer. Anal. Met., 42 (2018), 1199–1216.
 67. M. Zeiml, R. Lackner, F. Pesavento, et al., Thermohydrochemical couplings considered in safety assessment of shallow tunnels subjected to fire load, Fire Safety J., 43 (2008), 83–95.
 68. J. M. de Burgh and S. J. Foster, Influence of temperature on water vapour sorption isotherms and kinetics of hardened cement paste and concrete, Cement Concrete Res., 92 (2017), 37–55.
 69. D. Gawin, F. Pesavento and B. Schrefler, Modelling of hygrothermal behaviour and damage of concrete at temperature above the critical point of water, Int. J. Numer. Anal. Met., 26 (2002), 537–562.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *