Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Chance of extinction of populations in food chain model under demographic stochasticity

Dept. of Mathematics, Govt. College of Engg. & Textile Technology, Berhampore, Murshidabad, West Bengal, PIN-742101 MO +919339831862, India

Special Issues: Mathematical Modeling to Solve the Problems in Life Sciences

The extinction of different species from the earth is increasing at an alarming rate. So, assessment of probability of extinction of different important species in our ecosystem could help us to take proper conservation policy for those population whose chance of extinction is high. In this paper a method is developed to find the probability of extinction of populations in a general n-trophic food chain model under demographic stochasticity. The birth-death process is used to incorporate the demographic stochasticity and the necessary mathematical expressions are obtained. The theoretical finding is validated by numerical simulation for a two dimensional predator-prey system.
  Figure/Table
  Supplementary
  Article Metrics

Keywords extinction probability; food chain; prey-predator model; population size; random variable; birth-death process

Citation: Bapi Saha. Chance of extinction of populations in food chain model under demographic stochasticity. Mathematical Biosciences and Engineering, 2019, 16(5): 3537-3560. doi: 10.3934/mbe.2019177

References

  • 1. B. Ebenman, R. Law and C. Borrvall, Community viability analysis: The response of ecological
  • 2. M. E. Soulé and J. Terborgh, Protecting nature at regional and continental scales: A conservation biology program for the new millennium, BioScience, 49 (1999), 809–817.
  • 3. O. J. Schmitz, P. A. Hamback and A. P. Beckerman, Trophic cascades in terrestrial systems: A review of the effects of carnivore removal on plants, Am. Nat., 155 (2000), 141–153.
  • 4. M. E. Soulé, J. Estes, J. Berger, et al., Ecological effectiveness: Conservation goals for interactive species, Conserv. Biol., 17 (2003), 1238–1250.
  • 5. L. Oksanen and T. Oksanen, The logic and realism of the hypothesis of exploitation ecosystems, Am. Nat., 118 (2000), 240–261.
  • 6. A. M. Springer, J. E. Estes, G. B. van Vliet, et al., Sequential megafaunal collapse in the North Pacific Ocean: An ongoing legacy of industrial whaling?, Proceed. Nat. Aca. Sci., 100 (2003), 12223–12228.
  • 7. J. B. C. Jackson, M. X. Kirby, W. H. Berger, et al., Historical over fishing and the recent collapse of coastal ecosystems, Science, 293 (2001), 629–638.
  • 8. A. S. Laliberte and W. J. Ripple, Range contractions of North American carnivores and ungulates, BioScience, 54 (2004), 123–138.
  • 9. T. H. Tear, J. M. Scott, P. H. Hayward, et al., Recovery plans and the endangered species act:Are criticisms supported by data?, Conserv. Biol., 9 (1995), 182–195.
  • 10. D. Jennings, South Florida multi-species recovery plan. vero beach (FL): US fish and wildlife service, (1999).
  • 11. I. Nijs and I. Impens, Biological diversity and probability of local extinction of ecosystems, Funct. Ecol., 14 (2000), 46–54.
  • 12. C. Borrvall, B. Ebenman and T. Jonsson, Biodiversity lessens the risk of cascading extinction in model food webs, Ecol. Lett., 3 (2000), 131–136.
  • 13. Y. Ma and Q. Zhang, Stationary distribution and extinction of a three-species food chain stochastic model, Transact. A. Razmadze Math. Inst., 172 (2018), 251–264.
  • 14. J. Baumsteiger and P. B. Moyle, Assessing Extinction, BioScience, 67 (2017), 357–366.
  • 15. E. J. Allen, Stochastic differential equations and persistence time for two interacting populations, Dynam. Cont. Discret. Impul. Systems, 5 (1999), 271–281.
  • 16. E. J. Allen, L. J. S. Allen and H. Schurz, A comparison of persistence-time estimation for discrete and continuous population models that include demographic and environmental variability, Math. Biosci., 196 (2005), 14–38.
  • 17. M. J. Keeling, Multiplicative moments and measures of persistence in ecology, J. Theor. Biol., 205 (2000), 269–281.
  • 18. I. Krishnarajah, A. Cook, G. Marion, et al., Novel moment closure approximations in stochastic epidemics, Bullet. Math. Biol., 67 (2005), 855–873.
  • 19. R. Lande, S. Engen and B-E. Sæther, Stochastic Population Dynamics in Ecology and Conserva- tion, Oxford University Press, Oxford, 2003.
  • 20. Y. Cai, Y. Kang, M. Banerjee, et al., A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equat., 259 (2015), 7463–7502.
  • 21. Y. Cai, J. Jiao, Z. Gui, et al., Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226.
  • 22. W. Guo, Y. Cai, Q. Zhang, et al., Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage, Physica A, 492 (2018), 2220–2236.
  • 23. B. Yang, Y. Cai, K. Wang, et al., Global threshold dynamics of a stochastic epidemic model incorporating media coverage, Adv. Differ. Equat., 462 (2018).
  • 24. N. T. J. Bailey, Element of Stochastic Processes with applications to the natural sciences, Wiley, New York, 1964.
  • 25. R. M. May, Stability in randomly fluctuating versus deterministic environments, Am. Nat., 107 (1973), 621–650.
  • 26. E. Renshaw, Modelling Biological Populations in Space and Time, Cambridge University Press, Cambridge, 1993.
  • 27. E. Renshaw, Stochastic population processes: analysis, approximations, simulations, Oxord University Press, New York, 2011.
  • 28. A. J. Lotka, Elements of physical biology, Science Progress in the Twentieth Century (1919-1933), 21 (1926), 341–343.
  • 29. V. Volterra, Lecons sur la thorie mathmatique de la lutte pour la vie, Gauthier-Villars, Paris, 1931.
  • 30. G. F. Gause, The Struggle for Existence, 1934.
  • 31. S. L. Pimm, Food webs, Chapman and Hall, New York, USA, 1982.
  • 32. R. T. Paine, Food webs: road maps of interaction or grist for theoretical development?, Ecology, 69 (1988), 1648–1654.
  • 33. B. Dennis, Allee effects in stochastic populations, Oikos, 96 (2002), 389–401.
  • 34. B. Saha, A. R. Bhowmick, J. Chattopadhyay, et al., On the evidence of an allee effect in herring populations and consequences for population survival: A model-based study, Ecol. Modell., 250 (2013), 72–80.
  • 35. S. Karlin and H. M. Taylor, A second course in stochastic process, Oxord University Press, New York, 1981.
  • 36. J. H. Matis and T. R. Kiffe, On approximating the moments of the equilibrium distribution of a stochastic logistic model, Biometrics, 52 (1996), 980–991.
  • 37. J. H. Matis, T. R. Kiffe and P. R. Parthasarathy, On the cumulants of population size for the stochastic power law logistic model, Theor. Popul. Biol., 53 (1998), 16–29.
  • 38. J. H. Matis and T. R. Kiffe, Effects of immigration on some stochastic logistic models: A cumulant truncation analysis, Theor. Popul. Biol., 56 (1999), 139–161.
  • 39. I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model, J. Theor. Biol., 211 (2001), 11–27.
  • 40. I. Nåsell, Moment closure and the stochastic logistic model, Theor. Popul. Biol., 63 (2003), 159–168.
  • 41. A. R. Bhowmick, B. Saha, S. Ray, J. Chattopadhyay and S. Bhattacharya, Cooperation in species: Interplay of population regulation and extinction through global population dynamics database, Ecol. modell., 312 (2015), 150–165.
  • 42. R. Lande, Risks of population extinction from demographic and environmental stochasticity and random catastrophes, Am. Nat., 142 (2004), 911–927.
  • 43. B. Saha, On extended growth model, functional response and related mathematical issues: Il- lustration through experimental, history and simulated data, Ph.D thesis, University of Calcutta, 2015.
  • 44. A. Hastings and T. Powell, Chaos in a three species food chain, Am. Nat., 72 (1991), 896–903.
  • 45. J. W. Bull and M. Maron, How humans drive speciation as well as extinction, Proc. R. Soc. B, 283 (2016).
  • 46. S. L. Pimm, J. L. Gittleman and T. Brooks, The future of biodiversity, Science, 269 (1995), 347–350.
  • 47. O. E. Sala, Global biodiversity scenarios for the year 2100, Science, 287 (2000), 1770–1774.
  • 48. T. Brooks, J. Tobias and A. Balmford, Deforestation and bird extinctions in the Atlantic forest, Anim. Conserv., 2 (1999), 211–222.
  • 49. N. Ocampo-Pe˜ nuela, C. N. Jenkins, V. Vijay, et al., Incorporating explicit geospatial data shows more species at risk of extinction than the current Red List, Sci. Adv., 2 (2016).

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved