
Mathematical Biosciences and Engineering, 2019, 16(4): 27752794. doi: 10.3934/mbe.2019138.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A hybrid invasive weed optimization algorithm for the economic load dispatch problem in power systems
1 College of Computer Science, Liaocheng University, Liaocheng 252059, China
2 School of information science and engineering, Shandong Normal University, 250014, China
3 China Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 211189, China
Received: , Accepted: , Published:
Special Issues: Artificial Intelligence and Optimization in Sustainable Manufacturing
Keywords: economic dispatch; hybrid invasive weed optimization; crossover operation; mutation operation; power system
Citation: Zhixin Zheng, Junqing Li, Hongyan Sang. A hybrid invasive weed optimization algorithm for the economic load dispatch problem in power systems. Mathematical Biosciences and Engineering, 2019, 16(4): 27752794. doi: 10.3934/mbe.2019138
References:
 1. Z. X. Liang and J. D. Glover, A zoom feature for a dynamic programming solution to economic dispatch including transmission losses, IEEE T. Power Syst., 7 (1992), 544–550.
 2. G. Xiong and D. Shi, Orthogonal learning competitive swarm optimizer for economic dispatch problems, Appl. Soft. Comput. J., 66 (2018), 134–148.
 3. R. A. Jabr, A. H. Coonick and B. J. Cory, A homogeneous linear programming algorithm for the security constrained economic dispatch problem, IEEE T. Power Syst., 15 (2000), 930–936.
 4. S. Muralidharan, K. Srikrishna and S. Subramanian, Selfadaptive dynamic programming technique for economic power dispatch, Int. J. Power Energy Syst., 27 (2007), 340–345.
 5. N. Sinha, R. Chakrabarti and P. K. Chattopadhyay, evolutionary programming techniques for economic load dispatch, IEEE T. Evol. Comput., 7 (2003), 83–94.
 6. J. Q. Li, H. Y. Sang, Y. Y. Han, et al., Efficient multiobjective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions, J. Clean. Prod., 181 (2018), 584–598.
 7. J. Q. Li, S. C. Bai, P. Y. Duan, et al., An improved artificial bee colony algorithm for addressing distributed flow shop with distance coefficient in a prefabricated system, Int. J. Prod. Res., (2019).
 8. J. Q. Li, Q. K. Pan and K. Mao, A discrete teachinglearningbased optimisation algorithm for realistic flowshop rescheduling problems, Eng. Appl. Artif. Intell., 37 (2015), 279–292.
 9. J. Q. Li, P. Y. Duan, H. Y. Sang, et al., An efficient optimization algorithm for resourceconstrained steelmaking scheduling problems, IEEE Access, 6 (2018), 33883–33894.
 10. J. Q. Li, P. Y. Duan, J. D. Cao, et al., A hybrid Paretobased tabu search for the distributed flexible job shop scheduling problem with E/T criteria, IEEE Access, 6 (2018), 58883–58897.
 11. J. Q. Li, Q. K. Pan and M. F. Tasgetiren, A discrete artificial bee colony algorithm for the multiobjective flexible jobshop scheduling problem with maintenance activities, Appl. Math. Model., 38 (2014), 1111–1132.
 12. J. Q. Li, Q. K. Pan and S. X. Xie, An effective shuffled frogleaping algorithm for multiobjective flexible job shop scheduling problems, Appl. Math. Comput., 218 (2012), 9353–9371.
 13. J. Q. Li, Q. K. Pan and K. Z. Gao, Paretobased discrete artificial bee colony algorithm for multiobjective flexible job shop scheduling problems, Int. J. Adv. Manuf. Technol., 55 (2011), 1159–1169.
 14. J. Q. Li, A hybrid multiobjective artificial bee colony algorithm for flexible task scheduling problems in Cloud computing system, Cluster Comput., (2019), 1–24.
 15. P. Y. Duan, J. Q. Li, Y. Wang, et al., Solving chiller loading optimization problems using an improved teaching‐learning‐based optimization algorithm, Optim, Control Appl. Met., 39 (2018), 65–77.
 16. Z. X. Zheng, J. Q. Li and P.Y. Duan, Optimal chiller loading by improved artificial fish swarm algorithm for energy saving, Math. Comput. Simul., 155 (2019), 227–243.
 17. Z. X. Zheng and J. Q. Li, Optimal chiller loading by improved invasive weed optimization algorithm for reducing energy consumption, Energy Build, 161(2018), 80–88.
 18. S. Kumar and R. Naresh, Nonconvex economic load dispatch using an efficient realcoded genetic algorithm, Appl. Soft Comput. J., 9 (2009), 321–329.
 19. P. Subbaraj, R. Rengaraj and S. Salivahanan, Enhancement of Selfadaptive realcoded genetic algorithm using Taguchi method for Economic dispatch problem, Appl. Soft Comput. J., 11 (2011), 83–92.
 20. S. O. Orero and M. R. Irving, Large scale unit commitment using a hybrid genetic algorithm, Int. J. Electr. Power Energy Syst., 19 (1997), 45–55.
 21. P. Chen and H. Chang, Largescale economic dispatch by genetic algorithm, IEEE T. Power Syst., 10 (1995), 1919–1926.
 22. A. I. Selvakumar, A new particle swarm optimization solution to nonconvex economic dispatch problems, IEEE T. Power Syst., 22 (2007), 42–51.
 23. J. B. Park, Y. W. Jeong, J. R. Shin, et al., An improved particle swarm optimization for nonconvex economic dispatch problems, IEEE T. Power Syst., 25 (2010), 156–166.
 24. Z. Gaing, Particle swarm optimization to solving the economic dispatch considering the generator constraints, IEEE T. Power Syst., 18 (2003), 1187–1195.
 25. K. T. Chaturvedi, M. Pandit and L. Srivastava, Selforganizing hierarchical particle swarm optimization for nonconvex economic dispatch, IEEE T. Power Syst., 23 (2008), 1079–1087.
 26. Q. Qin, S. Cheng, X. Chu, et al., Solving nonconvex/nonsmooth economic load dispatch problems via an enhanced particle swarm optimization, Appl. Soft Comput. J., 59 (2017), 229–242.
 27. X. S. Yang, S. S. S. Hosseini and A. H. Gandomi, Firefly Algorithm for solving nonconvex economic dispatch problems with valve loading effect, Appl. Soft Comput. J., 12 (2012), 1180–1186.
 28. K. Bhattacharjee, A. Bhattacharya and S. H. N. Dey, Oppositional real coded chemical reaction optimization for different economic dispatch problems, Int. J. Electr. Power Energy Syst., 55 (2014), 378–391.
 29. A. S. Reddy and K. Vaisakh, Shuffled differential evolution for large scale economic dispatch, Electr. Power Syst. Res., 96 (2013), 237–245.
 30. D. Zou, S. Li, G. G. Wang, et al., An improved differential evolution algorithm for the economic load dispatch problems with or without valvepoint effects, Appl. Energy, 181 (2016), 375–390.
 31. B. R. Adarsh, T. Raghunathan, T. Jayabarathi, et al., Economic dispatch using chaotic bat algorithm, Energy, 96 (2016), 666–675.
 32. A. K. Barisal and R. C. Prusty, Large scale economic dispatch of power systems using oppositional invasive weed optimization, Appl. Soft Comput. J., 29 (2015), 122–137.
 33. S. Banerjee, D. Maity and C. K. Chanda, Teaching learning based optimization for economic load dispatch problem considering valve point loading effect, Int. J. Electr. Power Energy Syst., 73 (2015), 456–464.
 34. M. A. AlBetar, M. A. Awadallah, A. T. Khader, et al., Tournamentbased harmony search algorithm for nonconvex economic load dispatch problem, Appl. Soft Comput. J., 47 (2016), 449–459.
 35. M. Pradhan, P. K. Roy and T. Pal, Grey wolf optimization applied to economic load dispatch problems, Int. J. Electr. Power Energy Syst., 83 (2016), 325–334.
 36. T. Jayabarathi, T. Raghunathan, B. R. Adarsh, et al., Economic dispatch using hybrid grey wolf optimizer, Energy, 111 (2016), 630–641.
 37. M. Kumar and J. S. Dhillon, Hybrid artificial algae algorithm for economic load dispatch, Appl. Soft Comput., 71 (2018), 89–109.
 38. M. ModiriDelshad and N. A. Rahim, Solving nonconvex economic dispatch problem via backtracking search algorithm, Energy, 77 (2014), 372–381.
 39. J. J. Q. Yu and V. O. K. Li, A social spider algorithm for solving the nonconvex economic load dispatch problem, Neurocomputing, 171 (2016), 955–965.
 40. A. I. Selvakumar and K. Thanushkodi, Optimization using civilized swarm: Solution to economic dispatch with multiple minima, Electr. Power Syst. Res., 79 (2009), 8–16.
 41. M. Basu, Kinetic gas molecule optimization for nonconvex economic dispatch problem, Int. J. Electr. Power Energy Syst., 80 (2016), 325–332.
 42. J. Cai, Q. Li, L. Li, et al., A hybrid FCASOSQP method for solving the economic dispatch problems with valvepoint effects, Energy, 38 (2012), 346–353.
 43. J. S. Alsumait, J. K. Sykulski and A. K. AlOthman, A hybrid GAPSSQP method to solve power system valvepoint economic dispatch problems, Appl. Energy, 87 (2010), 1773–1781.
 44. J. Cai, Q. Li, L. Li, et al., A hybrid CPSOSQP method for economic dispatch considering the valvepoint effects, Energy Convers. Manag., 53 (2012), 175–181.
 45. S. Sayah and A. Hamouda, A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems, Appl. Soft Comput. J., 13 (2013), 1608–1619.
 46. A. R. Mehrabian and C. Lucas, A novel numerical optimization algorithm inspired from weed colonization, Ecol. Inform., 1 (2006), 355–366.
 47. T. A. A. Victoire and A. E. Jeyakumar, Reserve constrained dynamic dispatch of units with valvepoint effects, IEEE T. Power Syst., 20 (2005), 1273–1282.
 48. T. Niknam and F. Golestaneh, Enhanced adaptive particle swarm optimisation algorithm for dynamic economic dispatch of units considering valvepoint effects and ramp rates, IET Gener. Transm. Distrib., 6 (2012), 424–435.
 49. M. A. Elhameed and A. A. ElFergany, Water cycle algorithmbased economic dispatcher for sequential and simultaneous objectives including practical constraints, Appl. Soft Comput. J., 58 (2017), 145–154.
 50. E. Afzalan and M. Joorabian, An improved cuckoo search algorithm for power economic load dispatch, Int. Trans. Electr. Energy Syst., 25 (2015), 958–975.
 51. Y. Labbi, D. B. Attous, H. A. Gabbar, et al., A new rooted tree optimization algorithm for economic dispatch with valvepoint effect, Int. J. Electr. Power Energy Syst., 79 (2016), 298–311.
 52. N. Ghorbani and E. Babaei, Exchange market algorithm for economic load dispatch, Int. J. Electr. Power Energy Syst., 75 (2016), 19–27.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *