Citation: Zhi-xin Zheng, Jun-qing Li, Hong-yan Sang. A hybrid invasive weed optimization algorithm for the economic load dispatch problem in power systems[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2775-2794. doi: 10.3934/mbe.2019138
[1] | Z. X. Liang and J. D. Glover, A zoom feature for a dynamic programming solution to economic dispatch including transmission losses, IEEE T. Power Syst., 7 (1992), 544–550. |
[2] | G. Xiong and D. Shi, Orthogonal learning competitive swarm optimizer for economic dispatch problems, Appl. Soft. Comput. J., 66 (2018), 134–148. |
[3] | R. A. Jabr, A. H. Coonick and B. J. Cory, A homogeneous linear programming algorithm for the security constrained economic dispatch problem, IEEE T. Power Syst., 15 (2000), 930–936. |
[4] | S. Muralidharan, K. Srikrishna and S. Subramanian, Self-adaptive dynamic programming technique for economic power dispatch, Int. J. Power Energy Syst., 27 (2007), 340–345. |
[5] | N. Sinha, R. Chakrabarti and P. K. Chattopadhyay, evolutionary programming techniques for economic load dispatch, IEEE T. Evol. Comput., 7 (2003), 83–94. |
[6] | J. Q. Li, H. Y. Sang, Y. Y. Han, et al., Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions, J. Clean. Prod., 181 (2018), 584–598. |
[7] | J. Q. Li, S. C. Bai, P. Y. Duan, et al., An improved artificial bee colony algorithm for addressing distributed flow shop with distance coefficient in a prefabricated system, Int. J. Prod. Res., (2019). |
[8] | J. Q. Li, Q. K. Pan and K. Mao, A discrete teaching-learning-based optimisation algorithm for realistic flowshop rescheduling problems, Eng. Appl. Artif. Intell., 37 (2015), 279–292. |
[9] | J. Q. Li, P. Y. Duan, H. Y. Sang, et al., An efficient optimization algorithm for resource-constrained steelmaking scheduling problems, IEEE Access, 6 (2018), 33883–33894. |
[10] | J. Q. Li, P. Y. Duan, J. D. Cao, et al., A hybrid Pareto-based tabu search for the distributed flexible job shop scheduling problem with E/T criteria, IEEE Access, 6 (2018), 58883–58897. |
[11] | J. Q. Li, Q. K. Pan and M. F. Tasgetiren, A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities, Appl. Math. Model., 38 (2014), 1111–1132. |
[12] | J. Q. Li, Q. K. Pan and S. X. Xie, An effective shuffled frog-leaping algorithm for multi-objective flexible job shop scheduling problems, Appl. Math. Comput., 218 (2012), 9353–9371. |
[13] | J. Q. Li, Q. K. Pan and K. Z. Gao, Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems, Int. J. Adv. Manuf. Technol., 55 (2011), 1159–1169. |
[14] | J. Q. Li, A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in Cloud computing system, Cluster Comput., (2019), 1–24. |
[15] | P. Y. Duan, J. Q. Li, Y. Wang, et al., Solving chiller loading optimization problems using an improved teaching‐learning‐based optimization algorithm, Optim, Control Appl. Met., 39 (2018), 65–77. |
[16] | Z. X. Zheng, J. Q. Li and P.Y. Duan, Optimal chiller loading by improved artificial fish swarm algorithm for energy saving, Math. Comput. Simul., 155 (2019), 227–243. |
[17] | Z. X. Zheng and J. Q. Li, Optimal chiller loading by improved invasive weed optimization algorithm for reducing energy consumption, Energy Build, 161(2018), 80–88. |
[18] | S. Kumar and R. Naresh, Nonconvex economic load dispatch using an efficient real-coded genetic algorithm, Appl. Soft Comput. J., 9 (2009), 321–329. |
[19] | P. Subbaraj, R. Rengaraj and S. Salivahanan, Enhancement of Self-adaptive real-coded genetic algorithm using Taguchi method for Economic dispatch problem, Appl. Soft Comput. J., 11 (2011), 83–92. |
[20] | S. O. Orero and M. R. Irving, Large scale unit commitment using a hybrid genetic algorithm, Int. J. Electr. Power Energy Syst., 19 (1997), 45–55. |
[21] | P. Chen and H. Chang, Large-scale economic dispatch by genetic algorithm, IEEE T. Power Syst., 10 (1995), 1919–1926. |
[22] | A. I. Selvakumar, A new particle swarm optimization solution to nonconvex economic dispatch problems, IEEE T. Power Syst., 22 (2007), 42–51. |
[23] | J. B. Park, Y. W. Jeong, J. R. Shin, et al., An improved particle swarm optimization for nonconvex economic dispatch problems, IEEE T. Power Syst., 25 (2010), 156–166. |
[24] | Z. Gaing, Particle swarm optimization to solving the economic dispatch considering the generator constraints, IEEE T. Power Syst., 18 (2003), 1187–1195. |
[25] | K. T. Chaturvedi, M. Pandit and L. Srivastava, Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch, IEEE T. Power Syst., 23 (2008), 1079–1087. |
[26] | Q. Qin, S. Cheng, X. Chu, et al., Solving non-convex/non-smooth economic load dispatch problems via an enhanced particle swarm optimization, Appl. Soft Comput. J., 59 (2017), 229–242. |
[27] | X. S. Yang, S. S. S. Hosseini and A. H. Gandomi, Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect, Appl. Soft Comput. J., 12 (2012), 1180–1186. |
[28] | K. Bhattacharjee, A. Bhattacharya and S. H. N. Dey, Oppositional real coded chemical reaction optimization for different economic dispatch problems, Int. J. Electr. Power Energy Syst., 55 (2014), 378–391. |
[29] | A. S. Reddy and K. Vaisakh, Shuffled differential evolution for large scale economic dispatch, Electr. Power Syst. Res., 96 (2013), 237–245. |
[30] | D. Zou, S. Li, G. G. Wang, et al., An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects, Appl. Energy, 181 (2016), 375–390. |
[31] | B. R. Adarsh, T. Raghunathan, T. Jayabarathi, et al., Economic dispatch using chaotic bat algorithm, Energy, 96 (2016), 666–675. |
[32] | A. K. Barisal and R. C. Prusty, Large scale economic dispatch of power systems using oppositional invasive weed optimization, Appl. Soft Comput. J., 29 (2015), 122–137. |
[33] | S. Banerjee, D. Maity and C. K. Chanda, Teaching learning based optimization for economic load dispatch problem considering valve point loading effect, Int. J. Electr. Power Energy Syst., 73 (2015), 456–464. |
[34] | M. A. Al-Betar, M. A. Awadallah, A. T. Khader, et al., Tournament-based harmony search algorithm for non-convex economic load dispatch problem, Appl. Soft Comput. J., 47 (2016), 449–459. |
[35] | M. Pradhan, P. K. Roy and T. Pal, Grey wolf optimization applied to economic load dispatch problems, Int. J. Electr. Power Energy Syst., 83 (2016), 325–334. |
[36] | T. Jayabarathi, T. Raghunathan, B. R. Adarsh, et al., Economic dispatch using hybrid grey wolf optimizer, Energy, 111 (2016), 630–641. |
[37] | M. Kumar and J. S. Dhillon, Hybrid artificial algae algorithm for economic load dispatch, Appl. Soft Comput., 71 (2018), 89–109. |
[38] | M. Modiri-Delshad and N. A. Rahim, Solving non-convex economic dispatch problem via backtracking search algorithm, Energy, 77 (2014), 372–381. |
[39] | J. J. Q. Yu and V. O. K. Li, A social spider algorithm for solving the non-convex economic load dispatch problem, Neurocomputing, 171 (2016), 955–965. |
[40] | A. I. Selvakumar and K. Thanushkodi, Optimization using civilized swarm: Solution to economic dispatch with multiple minima, Electr. Power Syst. Res., 79 (2009), 8–16. |
[41] | M. Basu, Kinetic gas molecule optimization for nonconvex economic dispatch problem, Int. J. Electr. Power Energy Syst., 80 (2016), 325–332. |
[42] | J. Cai, Q. Li, L. Li, et al., A hybrid FCASO-SQP method for solving the economic dispatch problems with valve-point effects, Energy, 38 (2012), 346–353. |
[43] | J. S. Alsumait, J. K. Sykulski and A. K. Al-Othman, A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems, Appl. Energy, 87 (2010), 1773–1781. |
[44] | J. Cai, Q. Li, L. Li, et al., A hybrid CPSO-SQP method for economic dispatch considering the valve-point effects, Energy Convers. Manag., 53 (2012), 175–181. |
[45] | S. Sayah and A. Hamouda, A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems, Appl. Soft Comput. J., 13 (2013), 1608–1619. |
[46] | A. R. Mehrabian and C. Lucas, A novel numerical optimization algorithm inspired from weed colonization, Ecol. Inform., 1 (2006), 355–366. |
[47] | T. A. A. Victoire and A. E. Jeyakumar, Reserve constrained dynamic dispatch of units with valve-point effects, IEEE T. Power Syst., 20 (2005), 1273–1282. |
[48] | T. Niknam and F. Golestaneh, Enhanced adaptive particle swarm optimisation algorithm for dynamic economic dispatch of units considering valve-point effects and ramp rates, IET Gener. Transm. Distrib., 6 (2012), 424–435. |
[49] | M. A. Elhameed and A. A. El-Fergany, Water cycle algorithm-based economic dispatcher for sequential and simultaneous objectives including practical constraints, Appl. Soft Comput. J., 58 (2017), 145–154. |
[50] | E. Afzalan and M. Joorabian, An improved cuckoo search algorithm for power economic load dispatch, Int. Trans. Electr. Energy Syst., 25 (2015), 958–975. |
[51] | Y. Labbi, D. B. Attous, H. A. Gabbar, et al., A new rooted tree optimization algorithm for economic dispatch with valve-point effect, Int. J. Electr. Power Energy Syst., 79 (2016), 298–311. |
[52] | N. Ghorbani and E. Babaei, Exchange market algorithm for economic load dispatch, Int. J. Electr. Power Energy Syst., 75 (2016), 19–27. |