
Mathematical Biosciences and Engineering, 2019, 16(4): 26682696. doi: 10.3934/mbe.2019133
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Bifurcation analysis in a singular BeddingtonDeAngelis predatorprey model with two delays and nonlinear predator harvesting
School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
Received: , Accepted: , Published:
Special Issues: Differential Equations in Mathematical Biology
References
1. M. Kot, Elements of Mathematical Biology, Cambridge University Press, Cambridge, 2001.
2. S. Levin, T. Hallam and J. Cross, Applied Mathematical Ecology, Springer, New York, 1990.
3. R. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1993.
4. C. Ji, D. Jing and N. Shi, A note on a predatorprey model with modified LeslieGower and Hollingtype II schemes with stochastic perturbatio, J. Math. Anal. Appl., 377 (2011), 435–440.
5. T. Kar and H. Matsuda, Global dynamics and controllability of a harvested preypredator system with Holling type III functional response, Nonlinear Anal. Hybrid Syst., 1 (2007), 59–67.
6. X. Meng, J. Wang, H. Huo, Dynamical behaviour of a nutrientplankton model with Holling type IV, delay, and harvesting, Discrete Dyn. Nat. Soc., 2018 (2018), Article ID 9232590.
7. X. Meng, H. Huo, H. Xiang, et al., Stability in a predatorprey model with CrowleyMartin function and stage structure for prey, Appl. Math. Comput., 232 (2014), 810–819.
8. W. Yang, Diffusion has no influence on the global asymptotical stability of the LotkaVolterra prepredator model incorporating a constant number of prey refuges, Appl. Math. Comput., 223 (2013), 278–280.
9. Y. Zhu and K.Wang, Existence and global attractivity of positive periodic solutions for a predatorprey model with modified LeslieGower Hollingtype II schemes, J. Math. Anal. Appl., 384 (2011), 400–408.
10. J. Liu, Dynamical analysis of a delayed predatorprey system with modified LeslieGower and BeddingtonDeAngelis functional response, Adv. Difference Equ., 2014 (2014), 314–343.
11. X. Liu and Y. Wei, Dynamics of a stochastic cooperative predatorprey system with Beddington DeAngelis functional response, Adv. Difference Equ., 2016 (2016), 21–39.
12. C. Li, X. Guo and D. He, An impulsive diffusion predatorprey system in threespecies with BeddingtonDeAngelis response, J. Appl. Math. Comput., 43 (2013), 235–248.
13. T. Ivanov and N. Dimitrova, A predatorprey model with generic birth and death rates for the predator and BeddingtonDeAngelis functional response, Math. Comput. Simulat., 133 (2017), 111–123.
14. Q. Meng and L. Yang, Steady state in a crossdiffusion predatorprey model with the Beddington DeAngelis functional response, Nonlinear Anal.: Real World Appl., 45 (2019), 401–413.
15. W. Liu, C. Fu and B. Chen, Hopf bifurcation and center stability for a predatorprey biological economic model with prey harvesting, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3989– 3998.
16. F. Conforto, L. Desvillettes and C. Soresina, About reactiondiffusion systems involving the Hollingtype II and the BeddingtonDeAngelis functional responses for predatorprey models, Nonlinear Differ. Equ. Appl., 25 (2018), 24.
17. X. Sun, R. Yuan and L. Wang, Bifurcations in a diffusive predatorprey model with Beddington DeAngelis functional response and nonselective harvesting, J. Nonlinear Sci., 29 (2019), 287–318.
18. J. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340.
19. D. DeAngilis, R. Goldstein and R. Neill, A model for tropic interaction, Ecology, 56 (1975), 881–892.
20. H. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.
21. G. Seifert, Asymptotical behavior in a threecomponent food chain model, Nonlinear Anal. Theory Methods Appl., 32 (1998), 749–753.
22. C. Liu, Q. Zhang, X. Zhang, et al., Dynamical behavior in a stagestructured differentialalgebraic preypredator model with discrete time delay and harvesting, J. Comput. Appl. Math., 231 (2009), 612–625.
23. X. Meng, H. Huo, X. Zhang, et al., Stability and hopf bifurcation in a threespecies system with feedback delays, Nonlinear Dyn., 64 (2011), 349–364.
24. X. Meng and Y. Wu, Bifurcation and control in a singular phytoplanktonzooplanktonfish model with nonlinear fish harvesting and taxation, Int. J. Bifurcat. Chaos, 28 (2018), 1850042(24 pages).
25. H. Xiang, Y. Wang and H. Huo, Analysis of the binge drinking models with demographics and nonlinear infectivity on networks, J. Appl. Anal. Comput., 8 (2018), 1535–1554.
26. K. Chakraborty, M. Chakraboty and T. Kar, Bifurcation and control of a bioeconomic model of a preypredator system with a time delay, Nonlinear Anal. Hybrid Syst., 5 (2011), 613–625.
27. W. Liu, C. Fu and B. Chen, Hopf birfucation for a predatorprey biological economic system with Holling type II functional response, J. Franklin Inst., 348 (2011), 1114–1127.
28. G. Zhang, B. Chen, L. Zhu, et al., Hopf bifurcation for a differentialalgebraic biological economic system with time delay, Appl. Math. Comput, 218 (2012), 7717–7726.
29. T. Faria, Stability and bifurcation for a delayed predatorprey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433–463.
30. G. Zhang, Y. She and B. Chen, Hopf bifurcation of a predator prey system with predator harvesting and two delays, Nonlinear Dyn., 73 (2013), 2119–2131.
31. J. Zhang, Z. Jin, J. Yan, et al., Stability and Hopf bifurcation in a delayed competition system, Nonlinear Anal. Theory Methods Appl., 70 (2009), 658–670.
32. Z. Lajmiri, R. K. Ghaziani and I. Orak, Bifurcation and stability analysis of a ratiodependent predatorprey model with predator harvesting rate, Chaos Soliton Fract., 106 (2018), 193–200.
33. M. Liu, X. He and J. Yu, Dynamics of a stochastic regimeswitching predatorprey model with harvesting and distributed delays, Nonlinear Anal. Hybrid Syst., 28 (2018), 87–104.
34. T. Das, R. Mukerjee and K. Chaudhuri, Harvesting of a preypredator fishery in the presence of toxicity, Appl. Math. Model., 33 (2009), 2282–2292.
35. R. Gupta and P. Chandra, Bifurcation analysis of modied LeslieGower predatorprey model with MichaelisMenten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278–295.
36. P. Srinivasu, Bioeconomics of a renewable resource in presence of a predator, Nonlinear Anal. Real World Appl., 2 (2001), 497–506.
37. G. Lan, Y. Fu, C. Wei, et al., Dynamical analysis of a ratiodependent predatorprey model with Holling III type functional response and nonlinear harvesting in a random environment, Adv. Differ. Equ., 2018 (2018), 198.
38. R. Gupta and P. Chandra, Dynamical complexity of a preypredator model with nonlinear predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 423–443.
39. J. Liu and L. Zhang, Bifurcation analysis in a preypredator model with nonlinear predator harvesting, J. Franklin Inst., 353 (2016), 4701–4714.
40. K. Chakraborty, S. Jana and T. Kar, Global dynamics and bifurcation in a stage structured preypredator fishery model with harvesting, Appl. Math. Comput., 218 (2012), 9271–9290.
41. H. Gordon, The economic theory of a common property resource: the fishery, Bull. Math. Biol., 62 (1954), 124–142.
42. C. Liu, Q. Zhang and X. Duan, Dynamical behavior in a harvested differentialalgebraic preypredator model with discrete time delay and stage structure, J. Franklin Inst., 346 (2009), 1038– 1059.
43. X. Zhang and Q. Zhang, Bifurcation analysis and control of a class of hybrid biological economic models, Nonlinear Anal. Hybrid Syst., 3 (2009), 578–587.
44. C. Liu, N. Lu, Q. Zhang, et al., Modelling and analysis in a preypredator system with commercial harvesting and double time delays, J. Appl. Math. Comput., 281 (2016), 77–101.
45. M. Li, B. Chen and H. Ye, A bioeconomic differential algebraic predatorprey model with nonlinear prey harvesting, Appl. Math. Model., 42 (2017), 17–28.
46. P. Leslie and J. Gower, The properties of a stochastic model for the predator prey type of interaction between two species, Biometrika, 47 (1960), 219–234.
47. R. Cantrell and C. Cosner, On the dynamics of predatorprey models with the Beddington DeAngelis functional response, J. Math. Anal. Appl., 257 (2001), 206–222.
48. L. Dai, Singular Control System, Springer, New York, 1989.
49. V. Venkatasubramanian, H. Schattler and J. Zaborszky, Local bifurcations and feasibility regions in differentialalgebraic systems, IEEE Trans. Automat. Control, 40 (1995), 1992–2013.
50. Q. Zhang, C. Liu and X. Zhang, A singular bioeconomic model with diffusion and time delay, J. Syst. Sci. Complex., 24 (2011), 277–190.
51. J. Hale, Theory of Functional Differential Equations, Springer, New York, 1997.
52. B. Hassard, N. Kazarinoff and Y. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.
53. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983.
54. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993.
55. H. Freedman and V. S. H. Rao, The tradeoff between mutual interference and time lags in predatorprey systems, Bull. Math. Biol., 45 (1983), 991–1004.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)