Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Improved graph cut model with features of superpixels and neighborhood patches for myocardium segmentation from ultrasound image

1 Department of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
2 Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China

Special Issues: Advanced Computer Methods and Programs in Biomedicine

Ultrasound (US) imaging has the technical advantages for the functional evaluation of myocardium compared with other imaging modalities. However, it is a challenge of extracting the myocardial tissues from the background due to low quality of US imaging. To better extract the myocardial tissues, this study proposes a semi-supervised segmentation method of fast Superpixels and Neighborhood Patches based Continuous Min-Cut (fSP-CMC). The US image is represented by a graph, which is constructed depending on the features of superpixels and neighborhood patches. A novel similarity measure is defined to capture and enhance the features correlation using Pearson correlation coefficient and Pearson distance. Interactive labels provided by user play a subsidiary role in the semi-supervised segmentation. The continuous graph cut model is solved via a fast minimization algorithm based on augmented Lagrangian and operator splitting. Additionally, Non-Uniform Rational B-Spline (NURBS) curve fitting is used as post-processing to solve the low resolution problem caused by the graph-based method. 200 B-mode US images of left ventricle of the rats were collected in this study. The myocardial tissues were segmented using the proposed fSP-CMC method compared with the method of fast Neighborhood Patches based Continuous Min-Cut (fP-CMC). The results show that the fSP-CMC segmented the myocardial tissues with a higher agreement with the ground truth (GT) provided by medical experts. The mean absolute distance (MAD) and Hausdorff distance (HD) were significantly lower than those values of fP-CMC (p < 0.05), while the Dice was significantly higher (p < 0.05). In conclusion, the proposed fSP-CMC method accurately and effectively segments the myocardiumn in US images. This method has potentials to be a reliable segmentation method and useful for the functional evaluation of myocardium in the future study.
  Figure/Table
  Supplementary
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved