
Mathematical Biosciences and Engineering, 2018, 15(5): 12031224. doi: 10.3934/mbe.2018055
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A dynamic model of CT scans for quantifying doubling time of ground glass opacities using histogram analysis
1. Division of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, UK
2. Department of Medical Imaging, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, 37212, USA
3. Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA
Received: , Published:
We quantify a recent fivecategory CT histogram based classification of ground glass opacities using a dynamic mathematical model for the spatialtemporal evolution of malignant nodules. Our mathematical model takes the form of a spatially structured partial differential equation with a logistic crowding term. We present the results of extensive simulations and validate our model using patient data obtained from clinical CT images from patients with benign and malignant lesions.
References
[1] D. Ambrosi,F. Mollica, On the mechanics of a growing tumor, Int. J. Eng. Sci., 40 (2002): 12971316.
[2] H. Ammari, Mathematical Modeling in Biomedical Imaging 1. Electrical and Ultrasound Tomographies, Anomaly Detection, and Brain Imaging, Springer Science and Business Media, New York, 2009.
[3] A. R. A. Anderson,A. M. Weaver,P. T. Cummings,V. Quaranta, Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell, 127 (2006): 905915.
[4] F. R. Balkwill,M. Capasso,T. Hagemann, The tumor microenvironment at a glance, J. Cell Sci., 125 (2012): 55915596.
[5] T. M. Buzug, Computed Tomography, from Photon Statistics to Modern Conebeam CT, SpringerVerlag, BerlinHeidelbergNew York, 2008.
[6] Á. Calsina,J. Z. Farkas, Positive steady states of nonlinear evolution equations with finite dimensional nonlinearities, SIAM J. Math. Anal., 46 (2014): 14061426.
[7] R. S. Cantrell,C. Cosner, Diffusive logistic equations with indefinite weights: Population models in disrupted environments Ⅱ, SIAM J. Math. Anal., 22 (1991): 10431064.
[8] O. Clatz,M. Sermesant,P.Y. Bondiau,H. Delingette,S. K. Warfield,G. Malandain,N. Ayache, Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation, IEEE Trans. Med. Imag., 24 (2005): 13341346.
[9] F. Cornelis,O. Saut,P. Cumsille,D. Lombardi,A. Iollo,J. Palussiere,T. Colin, In vivo mathematical modeling of tumor growth from imaging data: Soon to come in the future?, Diag. Inter. Imag., 94 (2013): 593600.
[10] H. Enderling,M. A. J. Chaplain, Mathematical modeling of tumor growth and treatment, Curr. Pharm. Des., 20 (2014): 49344940.
[11] R. A. Gatenby,P. K. Maini,E. T. Gawlinski, Analysis of a tumor as an inverse problem provides a novel theoretical framework for understanding tumor biology and therapy, Appl. Math. Lett., 15 (2002): 339345.
[12] C. I. Henschke,D. F. Yankelevitz,R. Yip,A. P. Reeves,D. Xu,J. P. Smith,D. M. Libby,M. W. Pasmantier,O. S. Miettinen, Lung cancers diagnosed at annual CT screening: Volume doubling times, Radiology, 263 (2012): 578583.
[13] C. I. Henschke,R. Yip,J. P. Smith,A. S. Wolf,R. M. Flores,M. Liang,M. M. Salvatore,Y. Liu,D. M. Xu,D. F. Yankelevitz, CT screening for lung cancer: Partsolid nodules in baseline and annual repeat rounds, Am. J. Roentgenol, 207 (2016): 11761184.
[14] G. N. Hounsfield, Computed medical imaging, Nobel Lecture, J. Comput. Assist. Tomogr., 4 (1980): 665674.
[15] Y. Kawata,N. Niki,H. Ohmatsu,M. Kusumoto,T. Tsuchida,K. Eguchi,M. Kaneko,N. Moriyama, Quantitative classification based on CT histogram analysis of nonsmall cell lung cancer: Correlation with histopathological characteristics and recurrencefree survival, Med. Phys., 39 (2012): 9881000.
[16] E. Konukoglu,O. Clatz,B. H. Menze,B. Stieltjes,MA. Weber,E. Mandonnet,H. Delingette,N. Ayache, Image guided personalization of reactiondiffusion type tumor growth models using modified anisotropic eikonal equations, IEEE Trans. Med. Imag., 29 (2010): 7795.
[17] Y. Kuang, J. D. Nagy and S. E. Eikenberry, Introduction to Mathematical Oncology, Mathematical and Computational Biology Series, Taylor & Francis Group, Boca RatonLondonNew York, 2016.
[18] J. S. Lowengrub,H. B. Feiboes,F. Jin,Y.I. Chuang,X. Li,P. Macklin,S. M. Wise,V. Cristini, Nonlinear modelling of cancer: Bridging the gap between cells and tumors, Nonlinearity, 23 (2010): R1R91.
[19] R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Pure and Applied Mathematics, WileyInterscience, John Wiley & Sons, New YorkLondonSydney, 1976.
[20] D. Morgensztern,K. Politi,R. S. Herbst, EGFR Mutations in nonsmallcell lung cancer: Find, divide, and conquer, JAMA Oncol., 1 (2015): 146148.
[21] D. P. Naidich,A. A. Bankier,H. MacMahon,C. M. SchaeferProkop,M. Pistolesi,J. M. Goo,P. Macchiarini,J. D. Crapo,C. J. Herold,J. H. Austin,W. D. Travis, Recommendations for the management of subsolid pulmonary nodules detected at CT: A statement from the Fleischner Society, Radiology, 266 (2013): 304317.
[22] National lung screening trial research team, Reduced lungcancer mortality with lowdose computed tomographic screening, N. Engl. J. Med., 365 (2011), 395–409.
[23] J. Prüss, Equilibrium solutions of agespecific population dynamics of several species, J. Math. Biol., 11 (1981): 6584.
[24] R. Rockne, E. C. Alvord, Jr., M. Szeto, S. Gu, G. Chakraborty and K. R. Swanson, Modeling diffusely invading brain tumors: An individualized approach to quantifying glioma evolution and response to therapy, in Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition and Therapy, Modeling and Simulation in Science, Engineering and Technology Series, Birkh¨auserBoston, Boston, MA, 2008,207–221.
[25] K. R. Swanson,C. Bridge,J. D. Murray,E. C. Alvord Jr., Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion, J. Neurol. Sci., 216 (2003): 110.
[26] C. H. Wang,J. K. Rockhill,M. Mrugala,D. L. Peacock,A. Lai,K. Jusenius,J. M. Wardlaw,T. Cloughesy,A. M. Spence,R. Rockne,E. C. Alvord Jr.,K. R. Swanson, Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model, Can. Res., 69 (2009): 91339140.
[27] A. Y. Yakovlev, A. V. Zorin and B. I. Grudinko, Computer Simulation in Cell Radiobiology, Lecture Notes in Biomathematics, 74, SpringerVerlag, BerlinHeidelbergNew York, 1988.
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)