Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Complex wolbachia infection dynamics in mosquitoes with imperfect maternal transmission

1. College of Mathematics and Information Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
2. Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
3. Key laboratory for Tropical Diseases Control, (SYSU) Ministry of Education, Guangzhou, Guangdong 510080, China

Dengue, malaria, and Zika are dangerous diseases primarily transmitted by Aedes aegypti, Aedes albopictus, and Anopheles stephensi. In the last few years, a new disease control method, besides pesticide spraying to kill mosquitoes, has been developed by releasing mosquitoes carrying bacterium Wolbachia into the natural areas to infect the wild population of mosquitoes and block disease transmission. The bacterium is transmitted by infected mothers and the maternal transmission was assumed to be perfect in virtually all previous models. However, recent experiments on Aedes aegypti and Anopheles stephensi showed that the transmission can be imperfect. In this work, we develop a model to describe how the imperfect maternal transmission affects the dynamics of Wolbachia spread. We establish two useful identities and employ them to find sufficient and necessary conditions under which the system exhibits monomorphic, bistable, and polymorphic dynamics. These analytical results may help find a plausible explanation for the recent observation that the Wolbachia strain wMelPop failed to establish in the natural populations in Australia and Vietnam.

  Article Metrics

Keywords Population dynamics; Wolbachia; imperfect maternal transmission; cytoplasmic incompatibility; monomorphism; polymorphism; bistability

Citation: Bo Zheng, Wenliang Guo, Linchao Hu, Mugen Huang, Jianshe Yu. Complex wolbachia infection dynamics in mosquitoes with imperfect maternal transmission. Mathematical Biosciences and Engineering, 2018, 15(2): 523-541. doi: 10.3934/mbe.2018024


  • [1] G. Bian,Y. Xu,P. Lu,Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathogens, 6 (2010): e1000833.
  • [2] G. Bian,D. Joshi,Y. Dong,P. Lu,G. Zhou,X. Pan,Y. Xu,G. Dimopoulos,Z. Xi, Wolbachia invades Anopheles stephensi populations and induces refractoriness to plasmodium infection, Science, 340 (2013): 748-751.
  • [3] L. B. Carrington,J. R. Lipkowitz,A. A. Hoffmann,M. Turelli, A re-examination of Wolbachia-induced cytoplasmic incompatibility in California Drosophila simulans, PLoS One, 6 (2011): e22565.
  • [4] E. Caspari,G. S. Watson, On the evolutionary importance of cytoplasmic sterility in mosquitoes, Evolution, 13 (1959): 568-570.
  • [5] H. L. Dutra,L. M Dos Santos,E. P. Caragata,J. B. Silva,D. A. Villela,R. Maciel-De-Freitas, From lab to field: The influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes, PLoS Neglected Tropical Diseases, 9 (2015): e0003689.
  • [6] H. L. Dutra,M. N. Rocha,F. B. Dias,S. B. Mansur,E. P. Caragata,L. A. Moreira, Wolbachia, blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti, Cell Host Microbe, 19 (2016): 771-774.
  • [7] S. L. Dobson,C. W. Fox,F. M. Jiggins, The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems, Proceedings of the Royal Society B Biological Sciences, 269 (2002): 437-445.
  • [8] J. Z. Farkas,P. Hinow, Structured and unstructured continuous models for Wolbachia infections, Bulletin of Mathematical Biology, 72 (2010): 2067-2088.
  • [9] P. E. Fine, On the dynamics of symbiote-dependent cytoplasmic incompatibility in culicine mosquitoes, Journal of Invertebrate Pathology, 31 (1978): 10-18.
  • [10] F. D. Frentiu,T. Zakir,T. Walker,J. Popovici,A. T. Pyke,D. H. A. Van, Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia, PLoS Neglected Tropical Diseases, 8 (2014): e2688.
  • [11] C. A. Hamm,D. J. Begun,A. Vo,C. C. Smith,P. Saelao,A. O. Shaver,J. Jaenike,M. Turelli, Wolbachia do not live by reproductive manipulation alone: Infection polymorphism in Drosophila suzukii and D. subpulchrella, Molecular Ecology, 23 (2014): 4871-4885.
  • [12] R. Haygood,M. Turelli, Evolution of incompatibility-inducing microbes in subdivided host populations, Evolution, 63 (2009): 432-447.
  • [13] M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, And An Introduction to Chaos Second edition. Pure and Applied Mathematics (Amsterdam), 60. Elsevier/Academic Press, Amsterdam, 2004.
  • [14] A. A. Hoffmann,M. Turelli, Unidirectional incompatibility in Drosophila simulans: Inheritance, geographic variation and fitness effects, Genetics, 119 (1988): 435-444.
  • [15] A. A. Hoffmann, M. Turelli and L. G. Harshman, Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans, Genetics, 126 (1991), 933–948.
  • [16] A. A. Hoffmann and M. Turelli, Cytoplasmic incompatibility in insects, In Influential Passengers: Inherited Microorganisms and Arthropod Reproduction, S. L. O'Neill et al. , eds, Oxford University Press, Oxford, (1997), 42–80.
  • [17] A. A. Hoffmann,B. L. Montgomery,J. Popovici,I. Iturbeormaetxe,P. H. Johnson,F. Muzzi,M. Greenfield,M. Durkan,Y. S. Leong,Y. Dong,H. Cook,J. Axford, J. Axford, Gallahan, N. Kenny, C. Omodei, E. A. McGraw, P. A. Ryan, S. A. Ritchie, M. Turelli and S. L. O'Neill, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, 476 (2011): 454-459.
  • [18] A. A. Hoffmann,I. Iturbeormaetxe,A. G. Callahan,B. L. Phillips,K. Billington,J. K. Axford,B. Montgomery,A. P. Turley,S. L. O'Neill, Stability of the wMel Wolbachia infection following Invasion into Aedes aegypti populations, PLoS Neglected Tropical Diseases, 8 (2014): e3115-e3115.
  • [19] L. Hu,M. Huang,M. Tang,J. Yu,B. Zheng, Wolbachia spread dynamics in stochastic environments, Theoretical Population Biology, 106 (2015): 32-44.
  • [20] M. Huang,M. Tang,Y. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Science China Mathematics, 58 (2015): 77-96.
  • [21] M. Huang,J. Yu,L. Hu,B. Zheng, Qualitative analysis for a Wolbachia infection model with diffusion, Science China Mathematics, 59 (2016): 1249-1266.
  • [22] M. J. Keeling,F. M. Jiggins,J. M. Read, The invasion and coexistence of competing Wolbachia strains, Heredity, 91 (2003): 382-388.
  • [23] P. Kriesner,A. A. Hoffmann,S. F. Lee,M. Turelli,A. R. Weeks, Rapid sequential spread of two Wolbachia variants in Drosophila simulan, PLoS Pathogens, 9 (2013): e1003607.
  • [24] P. Kriesner,W. R. Conner,A. R. Weeks,M. Turelli,A. A. Hoffmann, Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy, Evolution, 70 (2016): 979-997.
  • [25] C. J. Mcmeniman,R. V. Lane,B. N. Cass,A. W. Fong,M. Sidhu,Y. F. Wang,S. L. O'Neill, Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, Science, 323 (2009): 141-144.
  • [26] T. H. Nguyen,H. L. Nguyen,T. Y. Nguyen,S. N. Vu,N. D. Tran,T. N. Le,S. Kutcher,T. P. Hurst,T. T. Duong,J. A. Jeffery,J. M. Darbro,B. H. Kay,I. Iturbe-Ormaetxe,J. Popovici,B. L. Montgomery,A. P. Turley,F. Zigterman,H. Cook,P. E. Cook,P. H. Johnson,P. A. Ryan,C. J. Paton,S. A. Ritchie,C. P. Simmons,L. O'Neill,A. A. Hoffmann, Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, Parasites Vectors, 8 (2015): p563.
  • [27] J. L. Rasgon,L. M. Styer,T. W. Scott, Wolbachia-induced mortality as a mechanism to modulate pathogen transmission by vector arthropods, Journal of Medical Entomology, 40 (2003): 125-132.
  • [28] P. A. Ross,I. Wiwatanaratanabutr,J. K. Axford,V. L. White,N. M. Endersby-Harshman,A. A. Hoffmann, Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress, PLoS Pathogens, 13 (2017): e1006006.
  • [29] J. G. Schraiber,A. N. Kaczmarczyk,R. Kwok,M. Park,R. Silverstein,F. U. Rutaganira,T. Aggarwal,M. A. Schwemmer,C. L. Hom,R. K. Grosberg,S. J. Schreiber, Constraints on the use of lifespan-shortening Wolbachia to control dengue fever, Journal of Theoretical Biology, 297 (2012): 26-32.
  • [30] M. Turelli,A. A. Hoffmann, Rapid spread of an inherited incompatibility factor in California Drosophila, Nature, 353 (1991): 440-442.
  • [31] M. Turelli, Evolution of incompatibility-inducing microbes and their hosts, Evolution, 48 (1994): 1500-1513.
  • [32] M. Turelli,A. A. Hoffmann, Cytoplasmic incompatibility in Drosophila simulans: Dynamics and parameter estimates from natural populations, Genetics, 140 (1995): 1319-1338.
  • [33] M. Turelli, Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations, Insect Molecular Biology, 8 (1999): 243-255.
  • [34] M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution, 64 (2010): 232-241.
  • [35] T. Walker,P. H. Johnson,L. A. Moreira,I. Iturbeormaetxe,F. D. Frentiu,C. J. McMeniman,Y. S. Leong,Y. Dong,J. Axford,P. Kriesner,A. L. Lloyd,S. A. Ritchie,S. L. O'Neill,A. A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011): 450-453.
  • [36] A. R. Weeks,M. Turelli,W. R. Harcombe,K. T. Reynolds,A. A. Hoffmann, From parasite to mutualist: Rapid evolution of Wolbachia in natural populations of Drosophila, PLoS Biology, 5 (2007): e114-e114.
  • [37] Z. Xi,S. L. Dobson, Characterization of Wolbachia transfection efficiency by using microinjection of embryonic cytoplasm and embryo homogenate, Applied Environmental Microbiology, 71 (2005): 3199-3204.
  • [38] Z. Xi,J. L. Dean,C. C. Khoo,S. L. Dobson, Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection, Insect Biochemistry Molecular Biology, 35 (2005): 903-910.
  • [39] Z. Xi,C. C. Khoo,S. L. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science, 310 (2005): 326-328.
  • [40] Z. Xi,C. C. Khoo,S. L. Dobson, Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus, Proceedings of the Royal Society B Biological Sciences, 273 (2006): 1317-1322.
  • [41] B. Zheng,M. Tang,J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM Journal on Applied Mathematics, 74 (2014): 743-770.


This article has been cited by

  • 1. Bo Zheng, Jianshe Yu, Characterization of Wolbachia enhancing domain in mosquitoes with imperfect maternal transmission, Journal of Biological Dynamics, 2018, 12, 1, 596, 10.1080/17513758.2018.1499969
  • 2. Meksianis Z. Ndii, Eti D. Wiraningsih, Nursanti Anggriani, Asep K. Supriatna, , Dengue Fever - a Resilient Threat in the Face of Innovation, 2019, Chapter 7, 10.5772/intechopen.79754
  • 3. Jianshe Yu, Jia Li, Dynamics of interactive wild and sterile mosquitoes with time delay, Journal of Biological Dynamics, 2019, 1, 10.1080/17513758.2019.1682201
  • 4. Jia Li, Shangbing Ai, Impulsive releases of sterile mosquitoes and interactive dynamics with time delay, Journal of Biological Dynamics, 2020, 14, 1, 313, 10.1080/17513758.2020.1748239
  • 5. Jianshe Yu, Jia Li, Global asymptotic stability in an interactive wild and sterile mosquito model, Journal of Differential Equations, 2020, 10.1016/j.jde.2020.04.036
  • 6. Jianshe Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, Journal of Differential Equations, 2020, 269, 12, 10395, 10.1016/j.jde.2020.07.019

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved