
Mathematical Biosciences and Engineering, 2017, 14(2): 467490. doi: 10.3934/mbe.2017029.
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Population models with quasiconstantyield harvest rates
1. Department of Mathematics, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
2. School of Mathematical Sciences and Centre for Computational Systems Biology, Fudan University, Shanghai 200433, China
Received: , Accepted: , Published:
Onedimensional logistic population models with quasiconstantyield harvest rates are studied under the assumptions that a population inhabits a patch of dimensionless width and no members of the population can survive outside of the patch. The essential problem is to determine the size of the patch and the ranges of the harvesting rate functions under which the population survives or becomes extinct. This is the first paper which discusses such models with the Dirichlet boundary conditions and can tell the exact quantity of harvest rates of the species without having the population die out. The methodology is to establish new results on the existence of positive solutions of semipositone Hammerstein integral equations using the fixed point index theory for compact maps defined on cones, and apply the new results to tackle the essential problem. It is expected that the established analytical results have broad applications in management of sustainable ecological systems.
Keywords: Logistic population model; quasiconstantyield harvest rate; Dirichlet boundary condition; semipositone integral equation; fixed point index
Citation: Kunquan Lan, Wei Lin. Population models with quasiconstantyield harvest rates. Mathematical Biosciences and Engineering, 2017, 14(2): 467490. doi: 10.3934/mbe.2017029
References:
 [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM. Rev., 18 (1976): 620709.
 [2] V. Anuradha,D. D. Hai,R. Shivaji, Existence results for superlinear semipositone BVP's, Proc. Amer. Math. Soc., 124 (1996): 757763.
 [3] J. E. M. Baillie, C. HiltonTaylor and S. N. Stuart, eds., IUCN red list of threatened species, A Global Species Assessment, IUCN, Gland, Switzerland, Cambridge, UK, 2004.
 [4] F. Brauer,D. A. Sánchez, Constant rate population harvesting: Equilibrium and stability, Theor. Popula. Biology, 8 (1975): 1230.
 [5] F. Brauer,A. C. Soudack, Coexistence properties of some predatorprey systems under constant rate harvesting and stocking, J. Math. Biol., 12 (1981): 101114.
 [6] F. Brauer,A. C. Soudack, Stability regions in predatorprey systems with constantrate prey harvesting, J. Math. Biol., 8 (1979): 5571.
 [7] C. W. Clark, Mathmatics Bioeconomics, The Optimal Management of Renewable Resources Second edition, Pure and Applied Mathematics (New York), A WileyInterscience Publication, John Wiley & Sons, Inc., New York, 1990.
 [8] E. Conway,R. Gardner,J. Smoller, Stability and bifurcation of steadystate solutions for predatorprey equations, Adv. Appl. Math., 3 (1982): 288334.
 [9] E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984): 729743.
 [10] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math., 1 (1951): 353367.
 [11] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937): 353369.
 [12] K. Q. Lan, Multiple positive solutions of semipositone SturmLiouville boundary value problems, Bull. London Math. Soc., 38 (2006): 283293.
 [13] K. Q. Lan, Positive solutions of semipositone Hammerstein integral equations and applications, Commun. Pure Appl. Anal., 6 (2007): 441451.
 [14] K. Q. Lan, Eigenvalues of semipositone Hammerstein integral equations and applications to boundary value problems, Nonlinear Anal., 71 (2009): 59795993.
 [15] K. Q. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc., 63 (2001): 690704.
 [16] K. Q. Lan, Multiple positive solutions of Hammerstein integral equations with singularities, Differential Equations Dynam. Systems, 8 (2000): 175192.
 [17] K. Q. Lan,C. R. Zhu, Phase portraits of predatorprey systems with harvesting rates, Discrete Contin. Dyn. Syst. Ser. A., 32 (2012): 901933.
 [18] K. Q. Lan,J. R. L. Webb, Positive solutions of semilinear differential equations with singularities, J. Differential Equations, 148 (1998): 407421.
 [19] L. G. Li, Coexistence theorems of steady states for predatorprey interacting systems, Trans. Amer. Math. Soc., 305 (1988): 143166.
 [20] D. Ludwig,D. C. Aronson,H. F. Weinberger, Spatial patterning of the spruce budworm, J. Math. Biology, 8 (1979): 217258.
 [21] R. Ma, Positive solutions for semipositone (k, nk) conjugate boundary value problems, J. Math. Anal. Appl., 252 (2000): 220229.
 [22] M. G. Neubert, Marine reserves and optimal harvesting, Ecol. Lett., 6 (2003): 843849.
 [23] A. Okubo, Diffusion and Ecological Problems: Mathematical Models. An Extended Version of the Japanese Edition, Ecology and Diffusion Translated by G. N. Parker. Biomathematics, 10. SpringerVerlag, BerlinNew York, 1980.
 [24] S. Oruganti,J. Shi,R. Shivaji, Diffusive equations with constant yield harvesting, Ⅰ: Steady states, Trans. Amer. Math. Soc., 354 (2002): 36013619.
 [25] L. Roques,M. D. Chekroun, On population resilience to external perturbations, SIAM J. Appl. Math., 68 (2007): 133153.
 [26] J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951): 196218.
 [27] D. Xiao,L. S. Jennings, Bifurcations of a ratiodependent predatorprey system with constant rate harvesting, SIAM J. Appl. Math., 65 (2005): 737753.
 [28] Z. Zhao, Positive solutions of semipositone Hammerstein integral equations and applications, Appl. Math. Comput., 219 (2012): 27892797.
 [29] C. R. Zhu,K. Q. Lan, Phase portraits, Hopf bifurcations and limit cycles of LeslieGower predatorprey systems with harvesting rates, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010): 289306.
Reader Comments
Copyright Info: 2017, Kunquan Lan, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *