Mathematical Biosciences and Engineering, 2016, 13(4): 741-785. doi: 10.3934/mbe.2016017.

Primary: 92D25, 92D30; Secondary: 92C60.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A two-strain TB model with multiplelatent stages

1. Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz
2. Simon A Levin Mathematics, Computational and Modeling Sciences Center, Arizona State University, PO Box 871904, Tempe, AZ 85287
3. Department of Mathematical Sciences, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043

A two-strain tuberculosis (TB) transmission model incorporating antibiotic-generated TB resistant strains and long and variable waiting periods within the latently infected class is introduced. The mathematical analysis is carried out when the waiting periods are modeled via parametrically friendly gamma distributions, a reasonable alternative to the use of exponential distributed waiting periods or to integral equations involving ``arbitrary'' distributions. The model supports a globally-asymptotically stable disease-free equilibrium when the reproduction number is less than one and an endemic equilibriums, shown to be locally asymptotically stable, or l.a.s., whenever the basic reproduction number is greater than one. Conditions for the existence and maintenance of TB resistant strains are discussed. The possibility of exogenous re-infection is added and shown to be capable of supporting multiple equilibria; a situation that increases the challenges faced by public health experts. We show that exogenous re-infection may help established resilient communities of actively-TB infected individuals that cannot be eliminated using approaches based exclusively on the ability to bring the control reproductive number just below $1$.
  Figure/Table
  Supplementary
  Article Metrics

Keywords reproduction number; stability; Equilibria; resistant tuberculosis; tuberculosis models.; gamma distribution; epidemiological models

Citation: Azizeh Jabbari, Carlos Castillo-Chavez, Fereshteh Nazari, Baojun Song, Hossein Kheiri. A two-strain TB model with multiplelatent stages. Mathematical Biosciences and Engineering, 2016, 13(4): 741-785. doi: 10.3934/mbe.2016017

References

  • 1. J Theor Biol, 215 (2002), 227-237.
  • 2. in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, Springer-Verlag. Edited by Sally Blower, Carlos Castillo-Chavez, Denise Kirschner, Pauline van den Driessche and Abdul-Aziz Yakubu, 125 (2002), 351-360.
  • 3. J Theor Biol, 206 (2000), 327-341.
  • 4. Math Biosci Eng, 6 (2009), 209-237.
  • 5. Am Rev Respir Dis, 114 (1976), 353-358.
  • 6. ASM Press, Washington, D.C., 1994.
  • 7. Nature Medicine, 1 (1995), 815-821.
  • 8. SIAM, 2013.
  • 9. Biomath, 2 (2013), 1312319, 2pp.
  • 10. J Math Biol, 35 (1997), 629-656.
  • 11. Advances in Mathematical Population Dynamics - Molecules, Cells, and Man O. Arino, D. Axelrod, M. Kimmel, (eds), World Scientific Press, (1998), 629-656.
  • 12. Math Biosci Eng, 1 (2004), 361-404.
  • 13. Lancet Infect Dis, 5 (2005), 629-636.
  • 14. Math Biosci, 180 (2002), 29-48.
  • 15. Theor Popul Biol, 57 ( 2000), 235-247.
  • 16. Journal of Dynamics and Differential Equations, 13 (2001), 425-452.
  • 17. Bulletin of Mathematical Biology, 69 (2007), 1511-1536.
  • 18. 2013. Available from: http://www.theguardian.com/society/2013/jan/23/antibiotic-resistant-diseases-apocalyptic-threat,
  • 19. 2015. Available from: http://apps.who.int/medicinedocs/documents/s21682en/s21682en.pdf.
  • 20. Math Biosc, 28 (1976), 335-356.
  • 21. SIAM Rev, 42 (2000), 599-653.
  • 22. Mathematical Biosciences, 167 (2000), 65-86.
  • 23. Math Biosc, 246 (2013), 84-93.
  • 24. Marcel Dekker Inc, New York and Basel, 41, 1989.
  • 25. Lancet Infect Dis, 3 (2003), 282-287.
  • 26. N Engl J Med, 315 (1986), 1570-1575.
  • 27. Trends in Pharmacological Sciences, 35 (2014), 664-674.
  • 28. Theoretical Population Biology, 54 (1998), 117-132.
  • 29. Am Rev Respir Dis, 108 (1973), 639-642.
  • 30. Am Rev Respir Dis, 112 (1975), 497-503.
  • 31. 2014. Available from: http://www.who.int/tb/publications/global_report/gtbr14_supplement_web_v3.pdf.
  • 32. Math Biosci Eng, 6 (2009), 815-837.
  • 33. Emerging Infectious Disease, 12 (2006), 1176-1178.
  • 34. N Engl J Med, 328 (1993), 1137-1144.
  • 35. American Mathematical Society, 1995.
  • 36. Thesis (Ph.D.)-Cornell University, 2002.
  • 37. Mathematical Biosciences, 180 (2002), 187-205.
  • 38. in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models Methods and Theory (eds. C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, A. A. Yakubu), Springer, New York, IMA, 126 (2002), 275-294.
  • 39. Am Rev Respir Dis, 91 (1965), 811-22.
  • 40. Theoretical Population Biology, 54 (1998), 117-132.
  • 41. Ph.D. Thesis, Purdue University, 2005.
  • 42. International Symposium on Mathematical and Computational Biology, (2010), 304-330.
  • 43. Available from: http://reliefweb.int/sites/reliefweb.int/files/resources/F530290AD0279399C12577D8003E9D65-Full_Report.pdf.

 

This article has been cited by

  • 1. Y. Ma, C. R. Horsburgh, L. F. White, H. E. Jenkins, Quantifying TB transmission: a systematic review of reproduction number and serial interval estimates for tuberculosis, Epidemiology and Infection, 2018, 1, 10.1017/S0950268818001760
  • 2. Dounia Bentaleb, Saida Amine, Lyapunov function and global stability for a two-strain SEIR model with bilinear and nonmonotone incidence, International Journal of Biomathematics, 2019, 10.1142/S1793524519500219

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Azizeh Jabbari, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved