Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation

  • We propose a model oftwo-species competition in the chemostat for a single growth-limiting,nonreproducing resource that extends that of Roy [38]. The response functions are specified to be Michaelis-Menten, and there is no predation in Roy's work. Our model generalizes Roy's model to general uptake functions. The competition is exploitative so that species compete by decreasing the common pool ofresources. The model also allows allelopathic effects of one toxin-producingspecies, both on itself (autotoxicity) and on its nontoxic competitor(phytotoxicity). We show that a stable coexistence equilibrium exists as long as (a) there are allelopathic effects and (b) the input nutrient concentration is above a critical value. The model is reconsidered under instantaneous nutrient recycling. We further extend this work to include a zooplankton species as a fourth interacting component to study the impact of predation on the ecosystem. The zooplankton species is allowed to feed only on the two phytoplankton species which are its perfectly substitutable resources. Each of the models is analyzed for boundedness, equilibria, stability, anduniform persistence (or permanence). Each model structure fits very well with some harmful algal bloom observations where the phytoplankton assemblage can be envisioned in two compartments, toxin producing and non-toxic. The Prymnesium parvum literature, where the suppressing effects of allelochemicals are quite pronounced, is a classic example. This work advances knowledge in an area of research becoming ever more important, which is understanding the functioning of allelopathy in food webs.

    Citation: Jean-Jacques Kengwoung-Keumo. Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation[J]. Mathematical Biosciences and Engineering, 2016, 13(4): 787-812. doi: 10.3934/mbe.2016018

    Related Papers:

    [1] K.Pandey Raghvendra, A.Stapleto Williamn, Shamsuzzoha Mohammad, Sutanto Ivan . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.243
    [2] Yaorong Su, Weiguang Xie, Jianbin Xu . Towards low-voltage organic thin film transistors (OTFTs) with solution-processed high-k dielectric and interface engineering. AIMS Materials Science, 2015, 2(4): 510-529. doi: 10.3934/matersci.2015.4.510
    [3] Gennaro Gelao, Roberto Marani, Anna Gina Perri . Analysis and design of current mode logic based on CNTFET. AIMS Materials Science, 2023, 10(6): 965-980. doi: 10.3934/matersci.2023052
    [4] Felicia Ullstad, Jay R. Chan, Harry Warring, Natalie Plank, Ben Ruck, Joe Trodahl, Franck Natali . Ohmic contacts of Au and Ag metals to n-type GdN thin films. AIMS Materials Science, 2015, 2(2): 79-85. doi: 10.3934/matersci.2015.2.79
    [5] Abbas Hodroj, Lionel Teulé-Gay, Michel Lahaye, Jean-Pierre Manaud, Angeline Poulon-Quintin . Nanocrystalline diamond coatings: Effects of time modulation bias enhanced HFCVD parameters. AIMS Materials Science, 2018, 5(3): 519-532. doi: 10.3934/matersci.2018.3.519
    [6] Alberto Debernardi . Ab initio calculation of band alignment of epitaxial La2O3 on Si(111) substrate. AIMS Materials Science, 2015, 2(3): 279-293. doi: 10.3934/matersci.2015.3.279
    [7] Dong Geun Lee, Hwan Chul Yoo, Eun-Ki Hong, Won-Ju Cho, Jong Tae Park . Device performances and instabilities of the engineered active layer with different film thickness and composition ratios in amorphous InGaZnO thin film transistors. AIMS Materials Science, 2020, 7(5): 596-607. doi: 10.3934/matersci.2020.5.596
    [8] Wei-Chi Chen, Pin-Yao Chen, Sheng-Hsiung Yang . Solution-processed hybrid light emitting and photovoltaic devices comprising zinc oxide nanorod arrays and tungsten trioxide layers. AIMS Materials Science, 2017, 4(3): 551-560. doi: 10.3934/matersci.2017.3.551
    [9] Takuto Eguchi, Shinya Kato, Naoki Kishi, Tetsuo Soga . Effect of thickness on photovoltaic properties of amorphous carbon/fullerene junction. AIMS Materials Science, 2022, 9(3): 446-454. doi: 10.3934/matersci.2022026
    [10] Giovanna Di Pasquale, Salvatore Graziani, Chiara Gugliuzzo, Antonino Pollicino . Ionic polymer-metal composites (IPMCs) and ionic polymer-polymer composites (IP2Cs): Effects of electrode on mechanical, thermal and electromechanical behaviour. AIMS Materials Science, 2017, 4(5): 1062-1077. doi: 10.3934/matersci.2017.5.1062
  • We propose a model oftwo-species competition in the chemostat for a single growth-limiting,nonreproducing resource that extends that of Roy [38]. The response functions are specified to be Michaelis-Menten, and there is no predation in Roy's work. Our model generalizes Roy's model to general uptake functions. The competition is exploitative so that species compete by decreasing the common pool ofresources. The model also allows allelopathic effects of one toxin-producingspecies, both on itself (autotoxicity) and on its nontoxic competitor(phytotoxicity). We show that a stable coexistence equilibrium exists as long as (a) there are allelopathic effects and (b) the input nutrient concentration is above a critical value. The model is reconsidered under instantaneous nutrient recycling. We further extend this work to include a zooplankton species as a fourth interacting component to study the impact of predation on the ecosystem. The zooplankton species is allowed to feed only on the two phytoplankton species which are its perfectly substitutable resources. Each of the models is analyzed for boundedness, equilibria, stability, anduniform persistence (or permanence). Each model structure fits very well with some harmful algal bloom observations where the phytoplankton assemblage can be envisioned in two compartments, toxin producing and non-toxic. The Prymnesium parvum literature, where the suppressing effects of allelochemicals are quite pronounced, is a classic example. This work advances knowledge in an area of research becoming ever more important, which is understanding the functioning of allelopathy in food webs.


    [1] Ecol. Model., 161 (2003), 53-66.
    [2] Amer. Natur., 139 (1992), 663-668.
    [3] Biotechnol. Bioeng., 19 (1977), 707-723.
    [4] Math. Biosci., 118 (1993), 127-180.
    [5] J. Math. Biol., 28 (1990), 99-111.
    [6] Biochem. J., 85 (1962), 440-447.
    [7] J. Math. Biol., 24 (1986), 167-191.
    [8] Math. Biosci., 83 (1987), 1-48.
    [9] J. Biol. Syst., 16 (2008), 547-564.
    [10] Eco. Let., 5 (2002), 302-315.
    [11] Bull. Math. Biol., 6 (1999), 303-339.
    [12] J. Plankton Res., 23 (2001), 389-413.
    [13] J. Theor. Biol., 191 (1998), 353-376.
    [14] In: Anderson, N. R., Zahurance, B. G. (eds). Oceanic Sound Scattering Predication, 1977, 749-765. New York: Plenum.
    [15] In: Avula, J. R. (eds). Math. Model., 4 (1977), 2081-2088. Rolla: University of Missouri Press.
    [16] J. Math. Biol., 5 (1978), 261-280.
    [17] Sci., 207 (1980), 1491-1493.
    [18] Sci., New series, 131 (1960), 1292-1297.
    [19] Amer. Natur., 144 (1994), 741-771.
    [20] SIAM J. Appl. Math., 32 (1977), 366-383.
    [21] SIAM J. Appl. Math., 34 (1978), 760-763.
    [22] Comput. Math. Appl., 49 (2005), 375-378.
    [23] J. Bacteriol., 113 (1976), 834-840.
    [24] J. Math. Bio. Eng., 11 (2014), 1319-1336.
    [25] J. Theor. Biol., 50 (1975), 185-201.
    [26] J. Math. Anal. Appl., 242 (2000), 75-92.
    [27] Cambridge University Press, 1974.
    [28] W. A. Benjamin, N.Y., 1971.
    [29] Fischer, Jena, 1937.
    [30] Hermann et Cie., Paris, 1942.
    [31] Ecol. Model., 198 (2006), 163-173.
    [32] Theor. Popul. Biol., 57 (2000), 131-144.
    [33] Third Edition, Springer, 2001.
    [34] Math. Biosci. Eng., 10 (2013), 861-872.
    [35] Amer. Natur., 105 (1971), 575-587.
    [36] Academic Press, Inc. 1984.
    [37] Limnol. Oceanog., 10 (Suppl.) (1965), R202-R215.
    [38] Theor. Popul. Biol., 75 (2009), 68-75.
    [39] Nonlinear Anal-Real., 14 (2013), 1621-1633.
    [40] J. Math. Biol., 31 (1993), 633-654.
    [41] J. Theor. Biol., 208 (2001), 15-26.
    [42] J. Theor. Biol., 244 (2007), 218-227.
    [43] Vol. 13 of Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge, U.K., 1995.
    [44] Ecol. Model., 183 (2005), 373-384.
    [45] J. Math. Biol., 30 (1992), 755-763.
    [46] 8th edition, Englewood Cliffs, NJ: Prentice-Hall, 1997.
    [47] Sci., 171 (1971), 757-770.
    [48] J. Appl. Math., 52 (1992), 222-233.
    [49] Biotechnol. Bioeng., 17 (1975), 1211-1235.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2264) PDF downloads(493) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog