Mathematical Biosciences and Engineering, 2015, 12(4): 687-697. doi: 10.3934/mbe.2015.12.687.

Primary: 62P10, 92B05; Secondary: 62P12, 92B10.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Mathematical probit and logistic mortality models of the Khapra beetle fumigated with plant essential oils

1. Department of Mathematics, Najran University, Najran,1988
2. Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El sheikh3516

In the current study, probit and logistic models were employed to fit experimental mortality data of the Khapra beetle, Trogoderma granarium (Everts) (Coleoptera: Dermestidae), when fumigated with three plant oils of the gens Achillea. A generalized inverse matrix technique was used to estimate the mortality model parameters instead of the usual statistical iterative maximum likelihood estimation. As this technique needs to perturb the observed mortality proportions if the proportions include 0 or 1, the optimal perturbation in terms of minimum least squares ($L_2$) error was also determined. According to our results, it was better to log-transform concentration and time as explanatory variables in modeling mortality of the test insect. Estimated data using the probit model were more accurate in terms of $L_2$ errors, than the logistic one. Results of the predicted mortality revealed also that extending the fumigation period could be an effective control strategy, even, at lower concentrations. Results could help in using a relatively safe and effective strategy for the control of this serious pest using alternative control strategy to reduce the health and environmental drawbacks resulted from the excessive reliance on the broadly toxic chemical pesticides and in order to contribute safeguard world-wide grain supplies.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Probit model; mortality.; plant oils; Khapra beetle; logistic model

Citation: Alhadi E. Alamir, Gomah E. Nenaah, Mohamed A. Hafiz. Mathematical probit and logistic mortality models of the Khapra beetle fumigated with plant essential oils. Mathematical Biosciences and Engineering, 2015, 12(4): 687-697. doi: 10.3934/mbe.2015.12.687

References

  • 1. $2^{nd}$ edition, Wiley, Hoboken,New Jersey, 2007.
  • 2. J. Stored Prod. Res., 31 (1995), 199-205.
  • 3. Springer press, New York, 2003.
  • 4. Ann. Entomol. Soc. Am., 33 (1940), 721-766.
  • 5. in: FAO Plant Production and Protection Paper, 54, FAO, Rome, 1984.
  • 6. B. Entomol. Res., 102 (2012), 213-229.
  • 7. Pestic Sci., (Now Pest Manag. Sci.), 49 (1997), 213-228.
  • 8. J. Stored Prod. Res., 41 (2005), 373-385.
  • 9. CAB Rev., 8 (2013), 1-13.
  • 10. $3^{nd}$ edition, Cambridge University Press, UK, 1971.
  • 11. Appl. Entomol. Zool, 32 (1997), 551-559.
  • 12. Annu. Rev. Entomol., 51 (2006), 45-66.
  • 13. in Pesticide Chemistry (Wiley-VCH, Weinheim, Germany (Ohkawa H, Miyagawa H, Lee P (Ed)), Academic Press, (2007), 201-209.
  • 14. in The 18th World IMACS Congress and MODSIM09, International Congress on Modelling and Simulation, Cairns, Australia, 2009, http://mssanz.org.au/modsim09.
  • 15. in: World Conservation Union, 2000, http://www.issg.org/database/species/reference_files/100English.pdf.
  • 16. J. Stored Prod. Res., 47 (2011), 185-190.
  • 17. J. Pest Sci., 87 (2014), 273-283.
  • 18. Ind. Crop Prod., 53 (2014), 252-260.
  • 19. J. Pest Sci., 84 (2011), 393-402.
  • 20. mechanism and management strategies, Lap. Lambert Acad. Pub., UK, 2010.
  • 21. in D. (Ed), Encyclopedia of Pest Management , Marcel Dekker, Inc., 2002.
  • 22. J. Stored Prod. Res., 44 (2008), 126-135.
  • 23. Annu. Rev. Entomol., 57 (2012), 405-424.
  • 24. J. Stored Prod. Res., 51 (2012), 23-32.
  • 25. Math. Biosci., 243 (2013), 137-146.
  • 26. Math. Biosci., 233 (2011), 77-89.
  • 27. J. Pest Sci., 85 (2012), 451-468.
  • 28. J. Stored Prod. Res., 21 (1985), 25-29.
  • 29. Extracting the Most Information From Experiments, Springer press, New York, 2005.

 

This article has been cited by

  • 1. Irina Gheorghe, Marcela Popa, Luminita Marutescu, Crina Saviuc, Veronica Lazar, Mariana Carmen Chifiriuc, , New Pesticides and Soil Sensors, 2017, 1, 10.1016/B978-0-12-804299-1.00002-3
  • 2. Elhadi E. Elamir, Abdulrhman A. Almadiy, Gomah E. Nenaah, Abdullah A. Alabas, Hajer S. Alsaqri, Comparing six mathematical link function models of the antifeedant activity of lesser grain borer exposed to sub-lethal concentrations of some extracts from calotropis procera, Bioengineered, 2019, 10, 1, 292, 10.1080/21655979.2019.1641399
  • 3. Nickolas G. Kavallieratos, Maria C. Boukouvala, Nikoletta Ntalli, Anna Skourti, Effrosyni S. Karagianni, Erifili P. Nika, Demetrius C. Kontodimas, Loredana Cappellacci, Riccardo Petrelli, Kevin Cianfaglione, Mohammad Reza Morshedloo, Léon Azefack Tapondjou, Rianasoambolanoro Rakotosaona, Filippo Maggi, Giovanni Benelli, Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium Everts, Food and Chemical Toxicology, 2020, 111255, 10.1016/j.fct.2020.111255

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Alhadi E. Alamir, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved