Mathematical Biosciences and Engineering, 2015, 12(3): 431-449. doi: 10.3934/mbe.2015.12.431.

Primary: 34K20, 34K60; Secondary: 34K18.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A mathematical model of HTLV-I infection with two time delays

1. Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, 3041#, 2 Yi-Kuang street, Harbin, 150080
2. Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, 3041#, 2 Yi-Kuang Street, Harbin, 150080
3. Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899

In this paper, we include two time delays in a mathematical model for the CD8$^+$ cytotoxicT lymphocytes (CTLs) response to the Human T-cell leukaemia virus type I (HTLV-I) infection,where one is the intracellular infection delay and the other is the immune delay to account for aseries of immunological events leading to the CTL response. We show that the global dynamicsof the model system are determined by two threshold values $R_0$, the correspondingreproductive number of a viral infection, and $R_1$, the corresponding reproductive numberof a CTL response, respectively. If $R_0<1$, the infection-free equilibrium is globallyasymptotically stable, and the HTLV-I viruses are cleared. If $R_1 < 1 < R_0$, the immune-freeequilibrium is globally asymptotically stable, and the HTLV-I infection is chronic but with nopersistent CTL response. If $1 < R_1$, a unique HAM/TSP equilibrium exists, and the HTLV-Iinfection becomes chronic with a persistent CTL response. Moreover, we show that the immunedelay can destabilize the HAM/TSP equilibrium, leading to Hopf bifurcations. Our numericalsimulations suggest that if $1 < R_1$, an increase of the intracellular delay may stabilize theHAM/TSP equilibrium while the immune delay can destabilize it. If both delays increase, thestability of the HAM/TSP equilibrium may generate rich dynamics combining the ``stabilizing"effects from the intracellular delay with those ``destabilizing" influences from immune delay.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Hopf bifurcation.; Epidemic threshold; HTLV-I infection; Lyapunov functional; time delay

Citation: Xuejuan Lu, Lulu Hui, Shengqiang Liu, Jia Li. A mathematical model of HTLV-I infection with two time delays. Mathematical Biosciences and Engineering, 2015, 12(3): 431-449. doi: 10.3934/mbe.2015.12.431

References

  • 1. Immunol. Cell Biol., 85 (2007), 280-286.
  • 2. in Fields (eds. B.N. Knipe, D.M. Howley, P.M.), Lippincott-Raven Publishers, (1996), 1849-1880.
  • 3. Mathematical Biosciences, 180 (2002), 29-48.
  • 4. Lancet, 326 (1985), 407-410.
  • 5. Proc Natl Acad Sci USA, 95 (1998), 7568-7573.
  • 6. Bulletin of Mathematical Biology, 72 (2010), 681-696.
  • 7. J. Math. Anal. Appl., 311 (2005), 231-253.
  • 8. J. Acquir. Immune Defic. Syndr., 3 (1990), 1096-1011.
  • 9. J. Math. Biol, 65 (2012), 181-199.
  • 10. Academic Press, New York, 1961.
  • 11. Bull Math Biol, 73 (2011), 1774-1793.
  • 12. Nonlinear Analysis: Real World Applications, 13 (2012), 1080-1092.
  • 13. Mathematical Biosciences and Engineering, 7 (2010), 675-685.
  • 14. Applied Mathematics and Computation, 219 (2013), 10559-10573.
  • 15. Math.Biosci, 163 (2000), 201-215.
  • 16. Oxford University Press, London, 2000.
  • 17. Vox Sang, 46 (1984), 245-253.
  • 18. Lancet, 327 (1986), 1031-1032.
  • 19. Math.Biosci, 235 (2012), 98-109.
  • 20. In Castillo-Chavez,C.(Ed),Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomathematics, 83 (1989), 350-370, Springer, Berlin.
  • 21. Mathematical Biosciences, 165 (2000), 27-39.
  • 22. J.Virol, 64 (1990), 5682-5687.
  • 23. in Two Decades of Adult T-cell Leukemia and HTLV-I Research (eds. K. Sugamura, T. Uehiyam, M. Matsuoka and M. Kannagi), Japan Scientific Societies, Tokyo, (2003), 303-316.
  • 24. Mathematical Biosciences and Engineering, 12 (2015), 185-208.
  • 25. Electronic Journal of Qualitative Theory of Differential Equations, 40 (2013), 1-15.
  • 26. Immunology today, 20 (1999), 220-227.
  • 27. Computational and Applied Mathematics, 32 (2013), 211-229.
  • 28. Blood, 99 (2002), 88-94.
  • 29. Can. Appl. Math. Q., 3 (1995), 473-495.

 

This article has been cited by

  • 1. Yiming Li, Jie Wang, Bo Sun, Jianliang Tang, Xizhuang Xie, Shuping Pang, Modeling and analysis of the secondary routine dose against measles in China, Advances in Difference Equations, 2017, 2017, 1, 10.1186/s13662-017-1125-2
  • 2. Yu Yang, Tonghua Zhang, Yancong Xu, Jinling Zhou, A Delayed Virus Infection Model with Cell-to-Cell Transmission and CTL Immune Response, International Journal of Bifurcation and Chaos, 2017, 27, 10, 1750150, 10.1142/S0218127417501504
  • 3. Shengqiang Liu, Xuejuan Lu, Yuming Chen, Bing Li, A delayed HIV-1 model with virus waning term, Mathematical Biosciences and Engineering, 2015, 13, 1, 135, 10.3934/mbe.2016.13.135
  • 4. Yang Lu, Dan Li, Shengqiang Liu, Modeling of hunting strategies of the predators in susceptible and infected prey, Applied Mathematics and Computation, 2016, 284, 268, 10.1016/j.amc.2016.03.005
  • 5. Jianpeng Wang, Zhidong Teng, Hui Miao, Global dynamics for discrete-time analog of viral infection model with nonlinear incidence and CTL immune response, Advances in Difference Equations, 2016, 2016, 1, 10.1186/s13662-016-0862-y

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Xuejuan Lu, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved