Mathematical Biosciences and Engineering, 2014, 11(3): 471-509. doi: 10.3934/mbe.2014.11.471.

Primary: 92D30, 92D40; Secondary: 37N25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A metapopulation model for sylvatic T. cruzi transmission with vector migration

1. Dallas Baptist University, 3000 Mountain Creek Pkwy, Dallas, TX 75211
2. UT Arlington Mathematics Dept, Box 19408, Arlington, TX 76019-0408

This study presents a metapopulation model for the sylvatic transmission of Trypanosoma cruzi, the etiological agent of Chagas' disease, across multiple geographical regions and multiple overlapping host-vector transmission cycles.Classical qualitative analysis of the model and several submodels focuses on the parasite's basic reproductive number, illustrating how vector migration across patches and multiple transmission routes to hosts (including vertical transmission) determine the infection's persistence in each cycle.Numerical results focus on trends in endemic [equilibrium] persistence levels as functions of vector migration rates, and highlight the significance of the different epidemiological characteristics of transmission in each of the three regions.
  Figure/Table
  Supplementary
  Article Metrics

Keywords dynamical systems; T. cruzi; reproductive number.; vector migration; metapopulation model

Citation: Britnee Crawford, Christopher Kribs-Zaleta. A metapopulation model for sylvatic T. cruzi transmission with vector migration. Mathematical Biosciences and Engineering, 2014, 11(3): 471-509. doi: 10.3934/mbe.2014.11.471

References

  • 1. (French) [Anosov flows with stable and unstable differentiable distributions], J. Amer. Math. Soc., 5 (1992), 33-74.
  • 2. Acta tropica, 41 (1984), 93-95.
  • 3. Journal of Theoretical Biology, 260 (2009), 510-522.
  • 4. Mathematical Medicine and Biology, 22 (2005), 129-142.
  • 5. Emerging Infectious Diseases, 9 (2003), 103-105.
  • 6. Clinical Infectious Diseases, 49 (2009), 52-54.
  • 7. Ecology, 40 (1959), 715-716.
  • 8. International Journal of Applied Science and Computation, 3 (1996), 78-90.
  • 9. Mammalian Species, 330 (1989), 1-9.
  • 10. Journal of Parasitology, 66 (1980), 305-311.
  • 11. Retrieved from http://www.cdc.gov/parasites/chagas
  • 12. MTBI Technical Report MTBI 05-05M. Arizona State University 2008.
  • 13. Molecular and Biochemical Parisitology, 66 (1994), 175-179.
  • 14. Am. Midl. Nat., 137 (1996), 290-297.
  • 15. Ecological Complexity, 14 (2013), 145-156.
  • 16. Social Science and Medicine, 40 (1995), 1437-1440.
  • 17. Infection, Genetics and Evolution, 7 (2007), 343-352.
  • 18. The Southwestern Naturalist, 8 (1963), 38-42.
  • 19. Mammalian Species, 189 (1982), 1-8.
  • 20. J. Mammalogy, 79 (1998), 859-872.
  • 21. American Journal of Tropical Medicine and Hygiene, 78 (2008), 133-139.
  • 22. Journal of Medical Entomology, 43 (2006), 143-150.
  • 23. Social Science and Medicine, 65 (2007), 60-79.
  • 24. The Lancet, 355 (2000), 236 pp.
  • 25. Journal of Economic Entomology, 77 (1984), 126-129.
  • 26. Vector-Borne and Zoonotic Diseases, 9 (2009), 41-50
  • 27. Mathematical Population Studies, 13 (2006), 132-152.
  • 28. PLOS Neglected Tropical Diseases, 4 (2010), 1-14.
  • 29. Mathematical Bioscences and Engineering, 7 (2010), 657-673.
  • 30. Geospatial Health, 2 (2008), 227-239.
  • 31. Acta Tropica, 52 (1992), 27-38.
  • 32. Bulletin of Mathematical Biology, 68 (2006), 3-23.
  • 33. Oxford: Oxford University Press, 1957.
  • 34. Mathematical Biosciences, 215 (2008), 64-77.
  • 35. Mammalian Species, 162 (1982), 1-9.
  • 36. The Southwestern Naturalist, 47 (2002), 70-77.
  • 37. American Heart Journal, 159 (2009), 22-29.
  • 38. Investigación clínica (Maracaibo), 44 (2003).
  • 39. Precedings of the Royal Society of London, 229 (1986), 111-1150.
  • 40. Journal of Wildlife Diseases, 34 (1998), 132-136.
  • 41. Journal of Medical Entomology, 7 (1970), 30-45.
  • 42. Journal of Parasitology, 81 (1995), 583-587.
  • 43. Bull. Texas Mem. Mus., 11 (1966), 1-62.
  • 44. Mem. Inst. Oswaldo Cruz., 98 (2003), 171-180.
  • 45. Emerging Infectious Diseases, 14 (2008), 1123-1125.
  • 46. (2nd edition). London: Murray 1911.
  • 47. PLoS Neglected Tropical Diseases, 4 (2010), 1-14.
  • 48. Medical and Veterinary Entomology, 6 (1992), 51-56.
  • 49. Journal of Mathematical Biology, 30 (1992), 755-763.
  • 50. Rocky Mountain Journal of Mathematics, 24 (1994), 351-380.
  • 51. The Southwestern Naturalist, 41 (1996), 116-122.
  • 52. The Southwestern Naturalist, 36 (1991), 233-262.
  • 53. Mathematical Biosciences, 180 (2002), 29-48.
  • 54. Biosystems, 26 (1991), 127-134.
  • 55. The Royal Society of Tropical Medicine and Hygiene, 102 (2008), 833-838.
  • 56. 173 (1982), 1-7.
  • 57. Retrieved from http://www.who.int/mediacentre/factsheets/fs340/en
  • 58. Journal of Parasitology, 88 (2002), 1273-1276.
  • 59. Vector-Borne and Zoonotic Diseases, 13 (2012), 1-9.
  • 60. Annual Review of Entomology, 26 (1981), 101-133.
  • 61. Mem. Inst. Oswaldo Cruz., 104 (2009), 1051-1054.

 

This article has been cited by

  • 1. Lauren A. White, James D. Forester, Meggan E. Craft, Thierry Boulinier, Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges, Journal of Animal Ecology, 2018, 87, 3, 559, 10.1111/1365-2656.12761
  • 2. Bruce Y. Lee, Sarah M. Bartsch, Laura Skrip, Daniel L. Hertenstein, Cameron M. Avelis, Martial Ndeffo-Mbah, Carla Tilchin, Eric O. Dumonteil, Alison Galvani, Ricardo E. Gürtler, Are the London Declaration’s 2020 goals sufficient to control Chagas disease?: Modeling scenarios for the Yucatan Peninsula, PLOS Neglected Tropical Diseases, 2018, 12, 3, e0006337, 10.1371/journal.pntd.0006337
  • 3. Manuel Adrian Acuña-Zegarra, Saúl Díaz-Infante, Stochastic asymptotic analysis of a multi-host model with vector transmission, Physica A: Statistical Mechanics and its Applications, 2018, 10.1016/j.physa.2018.06.105
  • 4. Christopher M. Kribs, Christopher Mitchell, Host switching vs. host sharing in overlapping sylvaticTrypanosoma cruzitransmission cycles, Journal of Biological Dynamics, 2015, 9, 1, 247, 10.1080/17513758.2015.1075611
  • 5. Daniel Olmos, Ignacio Barradas, David Baca-Carrasco, On the Calculation of $$R_0$$ R 0 Using Submodels, Differential Equations and Dynamical Systems, 2017, 25, 3, 481, 10.1007/s12591-015-0257-7
  • 6. Manuel Adrian Acuña-Zegarra, Daniel Olmos-Liceaga, Jorge X. Velasco-Hernández, The role of animal grazing in the spread of Chagas disease, Journal of Theoretical Biology, 2018, 10.1016/j.jtbi.2018.08.025
  • 7. Vanessa Steindorf, Norberto Aníbal Maidana, Modeling the Spatial Spread of Chagas Disease, Bulletin of Mathematical Biology, 2019, 10.1007/s11538-019-00581-5
  • 8. Britnee A. Crawford, Christopher M. Kribs-Zaleta, Gaik Ambartsoumian, Invasion Speed in Cellular Automaton Models for T. cruzi Vector Migration, Bulletin of Mathematical Biology, 2013, 75, 7, 1051, 10.1007/s11538-013-9840-7

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Britnee Crawford, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved