Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337.

Primary: 92D25, 92D30; Secondary: 34D20, 34C23, 91C99.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Modeling the impact of twitter on influenza epidemics

1. Department of Mathematics and Computational Science, University of South Carolina Beaufort, Bluffton, SC 29909
2. Department of Communication, University of Connecticut, Storrs, CT 06269
3. Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309

Influenza remains a serious public-health problem worldwide. Therising popularity and scale of social networking sites such asTwitter may play an important role in detecting, affecting, andpredicting influenza epidemics. In this paper, we develop a simplemathematical model including the dynamics of ``tweets'' --- short,140-character Twitter messages that may enhance the awareness ofdisease, change individual's behavior, and reduce the transmissionof disease among a population during an influenza season. We analyzethe model by deriving the basic reproductive number and proving thestability of the steady states. A Hopf bifurcation occurs when athreshold curve is crossed, which suggests the possibility ofmultiple outbreaks of influenza. We also perform numericalsimulations, conduct sensitivity test on a few parameters related totweets, and compare modeling predictions with surveillance data ofinfluenza-like illness reported cases and the percentage of tweetsself-reporting flu during the 2009 H1N1 flu outbreak in England andWales. These results show that social media programs like Twittermay serve as a good indicator of seasonal influenza epidemics andinfluence the emergence and spread of the disease.
  Figure/Table
  Supplementary
  Article Metrics

Keywords stability; Mathematical model; epidemiology; twitter; data fitting.; Hopf bifurcation; social media; influenza

Citation: Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong. Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337

References

  • 1. "http://www.statisticbrain.com/twitter-statistics." target="_blank">http://www.statisticbrain.com/twitter-statistics.
  • 2. HEALTHINF, SciTePress, (2012), 61-70.
  • 3. Epidemiol. Infect., 139 (2011), 68-79.
  • 4. Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, (2011), 1568-1576.
  • 5. Vaccine, 28 (2010), 2370-2384.
  • 6. BMC Medicine, 7 (2009), 45.
  • 7. J. Am. Pharm. Assoc., 50 (2010), 745-751.
  • 8. (2009).
  • 9. PLoS One, 5 (2010), e14118.
  • 10. J. Dyn. Differ. Equ., 20 (2008), 31-53.
  • 11. Proceedings of the First Workshop on Social Media Analytics, (2012), 115-122.
  • 12. The Nation's Health, 39 (2009), 1-10.
  • 13. Online J. Issues Nurs., 17 (2012), manuscript 4.
  • 14. Nature, 437 (2005), 209-214.
  • 15. Nature, 442 (2006), 448-452.
  • 16. J. R. Soc. Interface, 7 (2010), 1247-1256.
  • 17. PNAS, 106 (2009), 6872-6877.
  • 18. Nature, 457 (2009), 1012-1014.
  • 19. CMAJ, 181 (2009), 673-680.
  • 20. PNAS, 105 (2008), 4639-4644.
  • 21. J. Dent. Res., 90(9) (2011), 1047-1051.
  • 22. The Fifth International Symposium on Parallel Architectures, Algorithms and Programming, (2012), 100-105.
  • 23. Health Information Management Journal, 40 (2011), 33-35.
  • 24. in Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, New York, ACM Press, 2007, 56-65.
  • 25. Marcel Dekker, Inc., New York and Basel, 1989.
  • 26. Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.
  • 27. Vaccine, 28 (2010), 4875-4879.
  • 28. Infect. Cont. Hosp. Ep., 28 (2007), 1071-1076.
  • 29. Computational and Mathematical Methods in Medicine, (2011), Art. ID 527610, 17 pp.
  • 30. Comput. Math. Methods Med., 8 (2007), 153-164.
  • 31. Int. J. Biomath., 1 (2008), 65-74.
  • 32. Am. J. of Epidemiol., 159 (2004), 623-633.
  • 33. Vaccine, 28 (2009), 98-109.
  • 34. PLoS One, 5 (2011), e9018.
  • 35. BMC Infect. Dis., 9 (2009), 117.
  • 36. Pew Research Center's Project for Excellence in Journalism, (2012). Available from: http://stateofthemedia.org/2012/mobile-devices-and-news-consumption-some-good-signs-for-journalism/what-facebook-and-twitter-mean-for-news/.
  • 37. Online Marketing Blog, (2008). Available from: http://www.toprankblog.com/2008/05/top-10-twitter-uses/.
  • 38. Math. Biosci., 238 (2012), 80-89.
  • 39. J. Theoret. Biol., 260 (2009), 31-40.
  • 40. PLoS Comput. Biol., 6 (2010), e1000793.
  • 41. Am. J. Infect. Control, 38 (2010), 182-188.
  • 42. PLoS One, 6 (2011), e19467.
  • 43. Pew Internet and American Life Project, (2012). Available from: http://www.pewinternet.com/Reports/2012/Twitter-Use-2012.
  • 44. ISRN Biomathematics, 2012 (2012), 1-10.
  • 45. BMC Public Health, 11 (2011).
  • 46. in Understanding the Dynamics of Emerging and Re-Emerging Infectious Diseases Using Mathematical Models (eds. S. Mushayabasa and C. P. Bhunu), 2012, 157-177.
  • 47. Brit. J. Sports Med., 46 (2012), 258-263.
  • 48. in Electronic Healthcare, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 69, Springer Berlin Heidelberg, 2010, 18-26.
  • 49. 2010.
  • 50. Math. Biosci., 180 (2002), 29-48.
  • 51. Int. J. of Media Cultural Polit., 7 (2012), 333-348.
  • 52. Dermatol. Clin., 27 (2009), 133-136.
  • 53. Proceedings of the 13th World Congress on Public Health, (2012).
  • 54. PLoS Med., 3 (2006), e361.

 

This article has been cited by

  • 1. Winfried Just, Joan Saldaña, Ying Xin, Oscillations in epidemic models with spread of awareness, Journal of Mathematical Biology, 2018, 76, 4, 1027, 10.1007/s00285-017-1166-x
  • 2. Maoxing liu, Yuting Chang, Haiyan Wang, Benxing Li, Dynamics of the impact of Twitter with time delay on the spread of infectious diseases, International Journal of Biomathematics, 2018, 1850067, 10.1142/S1793524518500675
  • 3. Frederik Verelst, Lander Willem, Philippe Beutels, Behavioural change models for infectious disease transmission: a systematic review (2010–2015), Journal of The Royal Society Interface, 2016, 13, 125, 20160820, 10.1098/rsif.2016.0820
  • 4. Sylvie Diane Djiomba Njankou, Farai Nyabadza, Modelling the Potential Role of Media Campaigns in Ebola Transmission Dynamics, International Journal of Differential Equations, 2017, 2017, 1, 10.1155/2017/3758269
  • 5. Hai-Feng Huo, Xiang-Ming Zhang, Complex dynamics in an alcoholism model with the impact of Twitter, Mathematical Biosciences, 2016, 281, 24, 10.1016/j.mbs.2016.08.009
  • 6. Hai-Feng Huo, Peng Yang, Hong Xiang, Stability and bifurcation for an SEIS epidemic model with the impact of media, Physica A: Statistical Mechanics and its Applications, 2018, 490, 702, 10.1016/j.physa.2017.08.139
  • 7. Mingwang Shen, Yanni Xiao, Libin Rong, Modeling the effect of comprehensive interventions on Ebola virus transmission, Scientific Reports, 2015, 5, 1, 10.1038/srep15818
  • 8. Alexander M. Djuricich, Janine E. Zee-Cheng, Live tweeting in medicine: ‘Tweeting the meeting’, International Review of Psychiatry, 2015, 27, 2, 133, 10.3109/09540261.2014.1000270
  • 9. Shoko Wakamiya, Yukiko Kawai, Eiji Aramaki, Few Tweets After Flu Peak: Twitter-based Influenza Detection by Referring Indirect Information (Preprint), JMIR Public Health and Surveillance, 2017, 10.2196/publichealth.8627

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Kasia A. Pawelek, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved