Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Optimal strategies of social distancing and vaccination against seasonal influenza

1. Department of Mathematics, University of Tulsa, Tulsa, OK 74104

Optimal control strategies for controlling seasonal influenza transmission in the US are of high interest, because of the significant epidemiological and economic burden of influenza. To evaluate optimal strategies of vaccination and social distancing, we used an age-structured dynamic model of seasonal influenza. We applied optimal control theory to identify the best way of reducing morbidity and mortality at a minimal cost. In combination with the Pontryagins maximum principle, we calculated time-dependent optimal policies of vaccination and social distancing to minimize the epidemiological and economic burden associated with seasonal influenza. We computed optimal age-specific intervention strategies and analyze them under various costs of interventions and disease transmissibility. Our results show that combined strategies have a stronger impact on the reduction of the final epidemic size. Our results also suggest that the optimal vaccination can be achieved by allocating most vaccines to preschool-age children (age under five) followed by young adults (age 20-39) and school age children (age 6-19). We find that the optimal vaccination rates for all age groups are highest at the beginning of the outbreak, requiring intense effort at the early phase of an epidemic. On the other hand, optimal social distancing of clinical cases tends to last the entire duration of an outbreak, and its intensity is relatively equal for all age groups. Furthermore, with higher transmissibility of the influenza virus (i.e. higher R0), the optimal control strategy needs to include more efforts to increase vaccination rates rather than efforts to encourage social distancing. Taken together, public health agencies need to consider both the transmissibility of the virus and ways to encourage early vaccination as well as voluntary social distancing of symptomatic cases in order to determine optimal intervention strategies against seasonal influenza.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Optimal control theory; social distancing.; vaccination; influenza

Citation: Eunha Shim. Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615

References

  • 1. Oxford University Press, Oxford, 1991.
  • 2. Optimal Control Application Methods, 21 (2000), 269-285.
  • 3. Bull World Health Organization, 90 (2012), 264-271.
  • 4. $2^{nd}$ edition, Texts in Applied Mathematics, 40, Springer, New York, 2012.
  • 5. Am. J. Epidemiol, 162 (2005), 1-8.
  • 6. Value Health, 14 (2011), 800-811.
  • 7. PLoS One, 4 (2009), e8164.
  • 8. Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2000.
  • 9. BMC Infect. Dis., 7 (2007).
  • 10. Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975.
  • 11. Proc. Natl. Acad. Sci. USA, 104 (2007), 5692-5697.
  • 12. Hum. Vaccin. Immunother., 8 (2012), 21-28.
  • 13. Emerg. Infect. Dis., 12 (2006), 1671-1681.
  • 14. Math. Biosci., 235 (2012), 1-7.
  • 15. PLoS One, 5 (2010), e12777.
  • 16. Math. Biosci. Eng., 8 (2011), 183-197.
  • 17. JAMA, 272 (1994), 1661-1665.
  • 18. Ann. Intern. Med., 123 (1995), 518-527.
  • 19. PLoS One, 6 (2011), e22087.
  • 20. Med. J. Aust., 185 (2006), S35-8.
  • 21. Br. Med. Bull., 92 (2009), 33-42.
  • 22. J. R. Soc. Interface, 8 (2011), 661-670.
  • 23. BMC Public Health, 9 (2009).
  • 24. J. Theor. Biol., 265 (2010), 136-150.
  • 25. Bull. Math. Biol., 74 (2012), 958-980.
  • 26. Math. Biosci. Eng., 8 (2011), 171-182.
  • 27. BMC Med., 7 (2009).
  • 28. Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2007.
  • 29. BMC Infect. Dis., 10 (2010).
  • 30. Am. J. Epidemiol., 161 (2005), 303-306.
  • 31. Int. J. Infect. Dis., 8 (2004), 227-235.
  • 32. Science, 325 (2009), 1705-1708.
  • 33. BMC Public Health, 11 (2011), S11.
  • 34. PLoS One, 3 (2008), e1839.
  • 35. Vaccine, 25 (2007), 5086-5096.
  • 36. Vaccine, 26 (2008), 3742-3749.
  • 37. Euro. Surveill., 14 (2009), 19227.
  • 38. Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962.
  • 39. Math. Biosci. Eng., 8 (2011), 141-170.
  • 40. BMC Public Health, 11 (2011), S4.
  • 41. Arch. Intern. Med., 165 (2005), 265-272.
  • 42. Acta Biotheor, 59 (2011), 1-28.
  • 43. JAMA, 292 (2004), 1333-1340.
  • 44. JAMA, 289 (2003), 179-186.
  • 45. Math. Biosci., 240 (2012), 241-249.
  • 46. J. R. Soc. Interface, 9 (2012), 304-312.
  • 47. PLoS One, 5 (2010), e10520.
  • 48. Math. Biosci., 180 (2002), 29-48.
  • 49. Am. J. Epidemiol., 160 (2004), 509-516.
  • 50. Am. J. Epidemiol., 164 (2006), 936-944.
  • 51. Vaccine, 23 (2005), 1284-1293.
  • 52. Exp. Biol. Med. (Maywood), 236 (2011), 955-961.
  • 53. Math. Biosci., 211 (2008), 166-185.
  • 54. Available from: http://www.census.gov/population/international/data/idb/region.php.
  • 55. (2009). Available from: http://www.cdc.gov/h1n1flu/vaccination/pdf/A-Wortley-H1N1-sample-clinic.pdf.
  • 56. MMWR Recomm. Rep., 58(RR-10) (2009), 1-8.
  • 57. MMWR Recomm. Rep., 47(RR-15) (1998), 1-14.

 

This article has been cited by

  • 1. Kenneth J. Smith, Jonathan M. Raviotta, Jay V. DePasse, Shawn T. Brown, Eunha Shim, Mary Patricia Nowalk, Richard K. Zimmerman, Cost Effectiveness of Influenza Vaccine Choices in Children Aged 2–8 Years in the U.S., American Journal of Preventive Medicine, 2016, 50, 5, 600, 10.1016/j.amepre.2015.12.010
  • 2. Yao Zhang, Abhijin Adiga, Sudip Saha, Anil Vullikanti, B. Aditya Prakash, Near-Optimal Algorithms for Controlling Propagation at Group Scale on Networks, IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 12, 3339, 10.1109/TKDE.2016.2605088
  • 3. Saeid Hosseini, Hongzhi Yin, Ngai-Man Cheung, Kan Pak Leng, Yuval Elovici, Xiaofang Zhou, , Database Systems for Advanced Applications, 2018, Chapter 23, 342, 10.1007/978-3-319-91452-7_23
  • 4. Ta-Chien Chan, Yang-chih Fu, Da-Wei Wang, Jen-Hsiang Chuang, Mohammed Alsharifi, Determinants of Receiving the Pandemic (H1N1) 2009 Vaccine and Intention to Receive the Seasonal Influenza Vaccine in Taiwan, PLoS ONE, 2014, 9, 6, e101083, 10.1371/journal.pone.0101083
  • 5. Nicola Principi, Susanna Esposito, Influenza vaccine use to protect healthy children: A debated topic, Vaccine, 2017, 10.1016/j.vaccine.2017.09.016
  • 6. Jin Hyuk Choi, Yunhwan Kim, Seoyun Choe, Sunmi Lee, Assessment of the Intensive Countermeasures in the 2009 Pandemic Influenza in Korea, Osong Public Health and Research Perspectives, 2014, 5, 2, 101, 10.1016/j.phrp.2014.03.003
  • 7. Yao Zhang, Arvind Ramanathan, Anil Vullikanti, Laura Pullum, B. Aditya Prakash, Data-driven efficient network and surveillance-based immunization, Knowledge and Information Systems, 2019, 10.1007/s10115-018-01326-x
  • 8. Srinivasan Venkatramanan, Jiangzhuo Chen, Arindam Fadikar, Sandeep Gupta, Dave Higdon, Bryan Lewis, Madhav Marathe, Henning Mortveit, Anil Vullikanti, Cecile Viboud, Optimizing spatial allocation of seasonal influenza vaccine under temporal constraints, PLOS Computational Biology, 2019, 15, 9, e1007111, 10.1371/journal.pcbi.1007111

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, Eunha Shim, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved