Mathematical Biosciences and Engineering, 2010, 7(4): 905-918. doi: 10.3934/mbe.2010.7.905.

Primary: 92B05; Secondary: 34A30.

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

An elementary approach to modeling drug resistance in cancer

1. Department of Mathematics and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD 20742

Resistance to drugs has been an ongoing obstacle to a successful treatment of many diseases. In this work we consider the problem of drug resistance in cancer, focusing on random genetic point mutations. Most previous works on mathematical models of such drug resistance have been based on stochastic methods. In contrast, our approach is based on an elementary, compartmental system of ordinary differential equations. We use our very simple approach to derive results on drug resistance that are comparable to those that were previously obtained using much more complex mathematical techniques. The simplicity of our model allows us to obtain analytic results for resistance to any number of drugs. In particular, we show that the amount of resistance generated before the start of the treatment, and present at some given time afterward, always depends on the turnover rate, no matter how many drugs are simultaneously used in the treatment.
  Article Metrics

Keywords ordinary differential equations; cancer; stochastic methods.; Drug resistance

Citation: Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences and Engineering, 2010, 7(4): 905-918. doi: 10.3934/mbe.2010.7.905


This article has been cited by

  • 1. James Greene, Orit Lavi, Michael M. Gottesman, Doron Levy, The Impact of Cell Density and Mutations in a Model of Multidrug Resistance in Solid Tumors, Bulletin of Mathematical Biology, 2014, 76, 3, 627, 10.1007/s11538-014-9936-8
  • 2. David A. Kessler, Herbert Levine, Scaling Solution in the Large Population Limit of the General Asymmetric Stochastic Luria–Delbrück Evolution Process, Journal of Statistical Physics, 2015, 158, 4, 783, 10.1007/s10955-014-1143-3
  • 3. T. M. K. Cheng, S. Gulati, R. Agius, P. A. Bates, Understanding cancer mechanisms through network dynamics, Briefings in Functional Genomics, 2012, 11, 6, 543, 10.1093/bfgp/els025
  • 4. E. Piretto, M. Delitala, M. Ferraro, How combination therapies shape drug resistance in heterogeneous tumoral populations, Letters in Biomathematics, 2018, 1, 10.1080/23737867.2018.1465862
  • 5. Alexander Lorz, Tommaso Lorenzi, Jean Clairambault, Alexandre Escargueil, Benoît Perthame, Modeling the Effects of Space Structure and Combination Therapies on Phenotypic Heterogeneity and Drug Resistance in Solid Tumors, Bulletin of Mathematical Biology, 2015, 77, 1, 1, 10.1007/s11538-014-0046-4
  • 6. Santiago González, Nadezda Volkova, Philip Beer, Moritz Gerstung, Immuno-oncology from the perspective of somatic evolution, Seminars in Cancer Biology, 2017, 10.1016/j.semcancer.2017.12.001
  • 7. Ivana Bozic, Martin A. Nowak, Resisting Resistance, Annual Review of Cancer Biology, 2017, 1, 1, 203, 10.1146/annurev-cancerbio-042716-094839
  • 8. Mitra Shojania Feizabadi, Tarynn M Witten, Modeling drug resistance in a conjoint normal-tumor setting, Theoretical Biology and Medical Modelling, 2015, 12, 1, 10.1186/1742-4682-12-3
  • 9. Nara Yoon, Robert Vander Velde, Andriy Marusyk, Jacob G. Scott, Optimal Therapy Scheduling Based on a Pair of Collaterally Sensitive Drugs, Bulletin of Mathematical Biology, 2018, 80, 7, 1776, 10.1007/s11538-018-0434-2
  • 10. Donald Geman, Michael Ochs, Nathan D. Price, Cristian Tomasetti, Laurent Younes, An argument for mechanism-based statistical inference in cancer, Human Genetics, 2015, 134, 5, 479, 10.1007/s00439-014-1501-x
  • 11. YuanYuan Li, Scott C. Lenaghan, Mingjun Zhang, Nuno M. Neves, A Data-Driven Predictive Approach for Drug Delivery Using Machine Learning Techniques, PLoS ONE, 2012, 7, 2, e31724, 10.1371/journal.pone.0031724
  • 12. Mitra Shojania Feizabadi, Modeling multi-mutation and drug resistance: analysis of some case studies, Theoretical Biology and Medical Modelling, 2017, 14, 1, 10.1186/s12976-017-0052-y
  • 13. H. Cho, D. Levy, Modeling the chemotherapy-induced selection of drug-resistant traits during tumor growth, Journal of Theoretical Biology, 2018, 436, 120, 10.1016/j.jtbi.2017.10.005
  • 14. D. A. Kessler, H. Levine, Large population solution of the stochastic Luria-Delbruck evolution model, Proceedings of the National Academy of Sciences, 2013, 110, 29, 11682, 10.1073/pnas.1309667110
  • 15. Heyrim Cho, Doron Levy, Modeling the Dynamics of Heterogeneity of Solid Tumors in Response to Chemotherapy, Bulletin of Mathematical Biology, 2017, 79, 12, 2986, 10.1007/s11538-017-0359-1
  • 16. Frédéric Thomas, Daniel Fisher, Philippe Fort, Jean-Pierre Marie, Simon Daoust, Benjamin Roche, Christoph Grunau, Céline Cosseau, Guillaume Mitta, Stephen Baghdiguian, François Rousset, Patrice Lassus, Eric Assenat, Damien Grégoire, Dorothée Missé, Alexander Lorz, Frédérique Billy, William Vainchenker, François Delhommeau, Serge Koscielny, Raphael Itzykson, Ruoping Tang, Fanny Fava, Annabelle Ballesta, Thomas Lepoutre, Liliana Krasinska, Vjekoslav Dulic, Peggy Raynaud, Philippe Blache, Corinne Quittau-Prevostel, Emmanuel Vignal, Hélène Trauchessec, Benoit Perthame, Jean Clairambault, Vitali Volpert, Eric Solary, Urszula Hibner, Michael E. Hochberg, Applying ecological and evolutionary theory to cancer: a long and winding road, Evolutionary Applications, 2013, 6, 1, 1, 10.1111/eva.12021
  • 17. Sébastien Benzekry, Philip Hahnfeldt, Maximum tolerated dose versus metronomic scheduling in the treatment of metastatic cancers, Journal of Theoretical Biology, 2013, 335, 235, 10.1016/j.jtbi.2013.06.036
  • 18. Cristian Tomasetti, On the Probability of Random Genetic Mutations for Various Types of Tumor Growth, Bulletin of Mathematical Biology, 2012, 74, 6, 1379, 10.1007/s11538-012-9717-1
  • 19. Xiaoqiang Sun, Bin Hu, Mathematical modeling and computational prediction of cancer drug resistance, Briefings in Bioinformatics, 2017, 10.1093/bib/bbx065
  • 20. Péter Bayer, Joel S. Brown, Kateřina Staňková, A Two-Phenotype Model of Immune Evasion by Cancer Cells, Journal of Theoretical Biology, 2018, 10.1016/j.jtbi.2018.07.014
  • 21. Heyrim Cho, Doron Levy, Modeling continuous levels of resistance to multidrug therapy in cancer, Applied Mathematical Modelling, 2018, 10.1016/j.apm.2018.07.025
  • 22. Шамиль Ханафиевич Ганцев, Shamil Gantsev, Рамиль Назифович Бахтизин, Ramil N Bakhtizin, Марина Валерьевна Франц, Marina Valerievna Frants, Камиль Шамилевич Ганцев, Kamil Gantsev, Опухолевый рост и возможности математического моделирования системных процессов, Вестник Самарского государственного технического университета. Серия «Физико-математические науки», 2019, 23, 1, 131, 10.14498/vsgtu1661
  • 23. Weishan Liang, Yongjiang Zheng, Ji Zhang, Xiaoqiang Sun, Multiscale modeling reveals angiogenesis-induced drug resistance in brain tumors and predicts a synergistic drug combination targeting EGFR and VEGFR pathways, BMC Bioinformatics, 2019, 20, S7, 10.1186/s12859-019-2737-1
  • 24. Heinz Schättler, Urszula Ledzewicz, , Optimal Control for Mathematical Models of Cancer Therapies, 2015, Chapter 3, 115, 10.1007/978-1-4939-2972-6_3
  • 25. Arturo Álvarez-Arenas, Ana Podolski-Renic, Juan Belmonte-Beitia, Milica Pesic, Gabriel F. Calvo, Interplay of Darwinian Selection, Lamarckian Induction and Microvesicle Transfer on Drug Resistance in Cancer, Scientific Reports, 2019, 9, 1, 10.1038/s41598-019-45863-z
  • 26. FR Macfarlane, MAJ Chaplain, T Lorenzi, A stochastic individual-based model to explore the role of spatial interactions and antigen recognition in the immune response against solid tumours, Journal of Theoretical Biology, 2019, 480, 43, 10.1016/j.jtbi.2019.07.019
  • 27. Anyue Yin, Dirk Jan A.R. Moes, Johan G.C. Hasselt, Jesse J. Swen, Henk‐Jan Guchelaar, A Review of Mathematical Models for Tumor Dynamics and Treatment Resistance Evolution of Solid Tumors, CPT: Pharmacometrics & Systems Pharmacology, 2019, 10.1002/psp4.12450

Reader Comments

your name: *   your email: *  

Copyright Info: 2010, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved