Mathematical Biosciences and Engineering, 2010, 7(4): 825-836. doi: 10.3934/mbe.2010.7.825.

Primary: 92B05, 34D23; Secondary: 34C60.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A stoichiometrically derived algal growth model and its global analysis

1. Department of Mathematical Sciences, Beijing Normal University, Beijing 100875
2. Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1

Organisms are composed of multiple chemical elements such as carbon, nitrogen, and phosphorus. The scarcity of any of these elements can severely restrict organismal and population growth. However, many trophic interaction models only consider carbon limitation via energy flow. In this paper, we construct an algal growth model with the explicit incorporation of light and nutrient availability to characterize both carbon and phosphorus limitations. We provide a global analysis of this model to illustrate how light and nutrient availability regulate algal dynamics.
  Figure/Table
  Supplementary
  Article Metrics

Keywords carbon; light; nutrient; algae; global stability.; phosphorus; Stoichiometry; cell quota

Citation: Xiong Li, Hao Wang. A stoichiometrically derived algal growth model and its global analysis. Mathematical Biosciences and Engineering, 2010, 7(4): 825-836. doi: 10.3934/mbe.2010.7.825

 

This article has been cited by

  • 1. Ming Chen, Meng Fan, Yang Kuang, Global dynamics in a stoichiometric food chain model with two limiting nutrients, Mathematical Biosciences, 2017, 289, 9, 10.1016/j.mbs.2017.04.004
  • 2. Áron Anton, Gregorio De Julián, Agustín Delicado, Paula Sánchez, Daniel Valero, Lluís M. García Raffi, Enrique A. Sánchez Pérez, Ecoesferas: una propuesta de modelización en el ámbito de la escuela de Caminos, Modelling in Science Education and Learning, 2013, 6, 21, 10.4995/msel.2013.1852
  • 3. Suresh K. Jayaraman, R. Russell Rhinehart, Modeling and Optimization of Algae Growth, Industrial & Engineering Chemistry Research, 2015, 54, 33, 8063, 10.1021/acs.iecr.5b01635
  • 4. Jack Wallace, Pascale Champagne, Geof Hall, Multivariate statistical analysis of water chemistry conditions in three wastewater stabilization ponds with algae blooms and pH fluctuations, Water Research, 2016, 96, 155, 10.1016/j.watres.2016.03.046
  • 5. Arthur R. Grossman, Munevver Aksoy, , Annual Plant Reviews Volume 48, 2015, 337, 10.1002/9781118958841.ch12
  • 6. D. Jana, N. Bairagi, Habitat complexity, dispersal and metapopulations: Macroscopic study of a predator–prey system, Ecological Complexity, 2014, 17, 131, 10.1016/j.ecocom.2013.11.006
  • 7. Song-Fang Han, Wen-Biao Jin, Ren-Jie Tu, Wei-Min Wu, Biofuel production from microalgae as feedstock: current status and potential, Critical Reviews in Biotechnology, 2015, 35, 2, 255, 10.3109/07388551.2013.835301
  • 8. Xianshan Yang, Xiong Li, Hao Wang, Yang Kuang, Stability and Bifurcation in a Stoichiometric Producer-Grazer Model with Knife Edge, SIAM Journal on Applied Dynamical Systems, 2016, 15, 4, 2051, 10.1137/15M1023610
  • 9. Arthur R. Grossman, Munevver Aksoy, , Annual Plant Reviews, 2018, 337, 10.1002/9781119312994.apr0527
  • 10. Stan Pankratz, Adetoyese Olajire Oyedun, Amit Kumar, Novel satellite based analytical model developed to predict microalgae yields in open pond raceway systems and applied to Canadian sites, Algal Research, 2019, 39, 101431, 10.1016/j.algal.2019.101431
  • 11. Shengnan Zhao, Sanling Yuan, Hao Wang, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, Journal of Differential Equations, 2019, 10.1016/j.jde.2019.11.004

Reader Comments

your name: *   your email: *  

Copyright Info: 2010, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved