Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85.

Primary: 35K57; Secondary: 34K20, 92D25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model

1. Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1
2. Department of Mathematics, Champlain College Saint-Lambert, Saint-Lambert, Quebec, J4P 3P2

The paper is devoted to the study of a time-delayed reaction- diffusion equation of age-structured single species population. Linear stability for this model was first presented by Gourley [4], when the time delay is small. Here, we extend the previous result to the nonlinear stability by using the technical weighted-energy method, when the initial perturbation around the wavefront decays to zero exponentially as x→-∞, but the initial perturbation can be arbitrarily large on other locations. The exponential convergent rate (in time) of the solution is obtained. Numerical simulations are carried out to confirm the theoretical results, and the traveling wavefronts with a large delay term in the model are reported.
  Figure/Table
  Supplementary
  Article Metrics

Keywords time-delayed reaction-diffusion equation; exponential decay rate.; traveling wavefronts; non-linear stability

Citation: Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85

 

This article has been cited by

  • 1. Tianyuan Xu, Shanming Ji, Ming Mei, Jingxue Yin, Traveling waves for time-delayed reaction diffusion equations with degenerate diffusion, Journal of Differential Equations, 2018, 10.1016/j.jde.2018.06.008
  • 2. Yun-Rui Yang, Wan-Tong Li, Shi-Liang Wu, Exponential stability of traveling fronts in a diffusion epidemic system with delay, Nonlinear Analysis: Real World Applications, 2011, 12, 2, 1223, 10.1016/j.nonrwa.2010.09.017
  • 3. Shi-Liang Wu, Hai-Qin Zhao, San-Yang Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability, Zeitschrift für angewandte Mathematik und Physik, 2011, 62, 3, 377, 10.1007/s00033-010-0112-1
  • 4. Guo-Bao Zhang, Wan-Tong Li, Nonlinear stability of traveling wavefronts in an age-structured population model with nonlocal dispersal and delay, Zeitschrift für angewandte Mathematik und Physik, 2013, 64, 6, 1643, 10.1007/s00033-013-0303-7
  • 5. Shangjiang Guo, Johannes Zimmer, Stability of travelling wavefronts in discrete reaction–diffusion equations with nonlocal delay effects, Nonlinearity, 2015, 28, 2, 463, 10.1088/0951-7715/28/2/463
  • 6. Qifeng Zhang, Chengjian Zhang, A new linearized compact multisplitting scheme for the nonlinear convection–reaction–diffusion equations with delay, Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 12, 3278, 10.1016/j.cnsns.2013.05.018
  • 7. Jingdong Wei, Lixin Tian, Jiangbo Zhou, Zaili Zhen, Existence, uniqueness and asymptotic behavior of traveling wave fronts for a generalized Fisher equation with nonlocal delay, Chaos, Solitons & Fractals, 2017, 103, 536, 10.1016/j.chaos.2017.07.003
  • 8. Guangying Lv, Mingxin Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, Nonlinearity, 2010, 23, 4, 845, 10.1088/0951-7715/23/4/005
  • 9. Ming Mei, Chunhua Ou, Xiao-Qiang Zhao, Global Stability of Monostable Traveling Waves For Nonlocal Time-Delayed Reaction-Diffusion Equations, SIAM Journal on Mathematical Analysis, 2010, 42, 6, 2762, 10.1137/090776342
  • 10. Rui Huang, Ming Mei, Yong Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discrete and Continuous Dynamical Systems, 2012, 32, 10, 3621, 10.3934/dcds.2012.32.3621
  • 11. Yun-Rui Yang, Wan-Tong Li, Shi-Liang Wu, Stability of traveling waves in a monostable delayed system without quasi-monotonicity, Nonlinear Analysis: Real World Applications, 2013, 14, 3, 1511, 10.1016/j.nonrwa.2012.10.015
  • 12. Guo-Bao Zhang, Ruyun Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, Zeitschrift für angewandte Mathematik und Physik, 2014, 65, 5, 819, 10.1007/s00033-013-0353-x
  • 13. Shi-Liang Wu, Wan-Tong Li, San-Yang Liu, Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay, Discrete and Continuous Dynamical Systems - Series B, 2011, 17, 1, 347, 10.3934/dcdsb.2012.17.347
  • 14. Yun-Rui Yang, Li Liu, Stability of traveling waves in a population dynamics model with spatio-temporal delay, Nonlinear Analysis, 2016, 132, 183, 10.1016/j.na.2015.11.006
  • 15. Maohua Ran, Yu He, Linearized Crank–Nicolson method for solving the nonlinear fractional diffusion equation with multi-delay, International Journal of Computer Mathematics, 2017, 1, 10.1080/00207160.2017.1398326
  • 16. Ming Mei, Chi-Kun Lin, Chi-Tien Lin, Joseph W.-H. So, Traveling wavefronts for time-delayed reaction–diffusion equation: (II) Nonlocal nonlinearity, Journal of Differential Equations, 2009, 247, 2, 511, 10.1016/j.jde.2008.12.020
  • 17. Ming Mei, Chi-Kun Lin, Chi-Tien Lin, Joseph W.-H. So, Traveling wavefronts for time-delayed reaction–diffusion equation: (I) Local nonlinearity, Journal of Differential Equations, 2009, 247, 2, 495, 10.1016/j.jde.2008.12.026
  • 18. Guo-Bao Zhang, Global stability of traveling wave fronts for non-local delayed lattice differential equations, Nonlinear Analysis: Real World Applications, 2012, 13, 4, 1790, 10.1016/j.nonrwa.2011.12.010
  • 19. Mengqi Li, Peixuan Weng, Yong Yang, Nonlinear stability of traveling waves for a multi-type SIS epidemic model, International Journal of Biomathematics, 2018, 11, 01, 1850003, 10.1142/S1793524518500031
  • 20. Shi-Liang Wu, Wan-Tong Li, San-Yang Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction–diffusion equations with delay, Journal of Mathematical Analysis and Applications, 2009, 360, 2, 439, 10.1016/j.jmaa.2009.06.061
  • 21. Ansgar Jüngel, , Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, 2010, Chapter 15, 397, 10.1007/978-0-8176-4946-3_15

Reader Comments

your name: *   your email: *  

Copyright Info: 2008, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved