Mathematical modeling of biowall reactors for in-situ groundwater treatment

  • Received: 01 March 2005 Accepted: 29 June 2018 Published: 01 August 2006
  • MSC : 35K57, 65M99, and 92B99.

  • In this paper we develop a comprehensive model for the remediation of contaminated groundwater in a passive, in-ground reactor, generally known as a biowall. The model is based on our understanding of the component transport and biokinetic processes that occur as water passes through a bed of inert particles on which a biofilm containing active microbial degraders, typically aerobic bacteria, is developing. We give a detailed derivation of the model based on accepted engineering formulations that account for the mass transport of the contaminant (substrate) to the surface of the biofilm, its diffusion into the biofilm to the proximity of a microbe, and its subsequent destruction within that degrader. The model has been solved numerically and incorporated in a robust computer code. Based on representative input values, the results of varying key parameters in the model are presented. The relation between biofilm growth and biowall performance is explored, revealing that the amount of biomass and its distribution within the biowall are key parameters affecting contaminant removal.

    Citation: Donna J. Cedio-Fengya, John G. Stevens. Mathematical modeling of biowall reactors for in-situ groundwater treatment[J]. Mathematical Biosciences and Engineering, 2006, 3(4): 615-634. doi: 10.3934/mbe.2006.3.615

    Related Papers:

  • In this paper we develop a comprehensive model for the remediation of contaminated groundwater in a passive, in-ground reactor, generally known as a biowall. The model is based on our understanding of the component transport and biokinetic processes that occur as water passes through a bed of inert particles on which a biofilm containing active microbial degraders, typically aerobic bacteria, is developing. We give a detailed derivation of the model based on accepted engineering formulations that account for the mass transport of the contaminant (substrate) to the surface of the biofilm, its diffusion into the biofilm to the proximity of a microbe, and its subsequent destruction within that degrader. The model has been solved numerically and incorporated in a robust computer code. Based on representative input values, the results of varying key parameters in the model are presented. The relation between biofilm growth and biowall performance is explored, revealing that the amount of biomass and its distribution within the biowall are key parameters affecting contaminant removal.


    加载中
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1641) PDF downloads(512) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog