92D30.

Export file:

Format

• RIS(for EndNote,Reference Manager,ProCite)
• BibTex
• Text

Content

• Citation Only
• Citation and Abstract

Stochastic epidemic models with a backward bifurcation

1. Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042
2. Department of Mathematics and Statistics, University of Victoria, Victoria B.C., Canada V8W 3P4

## Abstract    Related pages

Two new stochastic epidemic models, a continuous-time Markov chain model and a stochastic differential equation model, are formulated. These are based on a deterministic model that includes vaccination and is applicable to pertussis. For some parameter values, the deterministic model exhibits a backward bifurcation if the vaccine is imperfect. Thus a region of bistability exists in a subset of parameter space. The dynamics of the stochastic epidemic models are investigated in this region of bistability, and compared with those of the deterministic model. In this region the probability distribution associated with the infective population exhibits bimodality with one mode at the disease-free equilibrium and the other at the larger endemic equilibrium. For population sizes $N\geq 1000$, the deterministic and stochastic models agree, but for small population sizes the stochastic models indicate that the backward bifurcation may have little effect on the disease dynamics.
Figure/Table
Supplementary
Article Metrics

Citation: Linda J. S. Allen, P. van den Driessche. Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445

• 1. Lin Zhu, Tiansi Zhang, A Stochastic SIVS Epidemic Model Based on Birth and Death Process, Journal of Applied Mathematics and Physics, 2016, 04, 09, 1837, 10.4236/jamp.2016.49186
• 2. Masaaki Ishikawa, Stochastic Optimal Control of an SIR Epidemic Model with Vaccination, Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications, 2012, 2012, 0, 57, 10.5687/sss.2012.57
• 3. Edward J. Allen, Linda J. S. Allen, Armando Arciniega, Priscilla E. Greenwood, Construction of Equivalent Stochastic Differential Equation Models, Stochastic Analysis and Applications, 2008, 26, 2, 274, 10.1080/07362990701857129
• 4. D. Ndanguza, I. S. Mbalawata, J. P. Nsabimana, Analysis of SDEs Applied to SEIR Epidemic Models by Extended Kalman Filter Method, Applied Mathematics, 2016, 07, 17, 2195, 10.4236/am.2016.717175
• 5. Martin Griffiths, David Greenhalgh, The probability of extinction in a bovine respiratory syncytial virus epidemic model, Mathematical Biosciences, 2011, 231, 2, 144, 10.1016/j.mbs.2011.02.011
• 6. Masaaki Ishikawa, Optimal Vaccination Problems for the Stochastic SIR Model with Saturated Treatment, Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications, 2013, 2013, 0, 203, 10.5687/sss.2013.203
• 7. David Greenhalgh, Martin Griffiths, Dynamic phenomena arising from an extended Core Group model, Mathematical Biosciences, 2009, 221, 2, 136, 10.1016/j.mbs.2009.08.003
• 8. SOPHIA R.-J. JANG, BACKWARD BIFURCATION IN A DISCRETE SIS MODEL WITH VACCINATION, Journal of Biological Systems, 2008, 16, 04, 479, 10.1142/S0218339008002630
• 9. Davood Rostamy, Ehsan Mottaghi, Forward and Backward Bifurcation in a Fractional-Order SIR Epidemic Model with Vaccination, Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42, 2, 663, 10.1007/s40995-018-0519-7
• 10. Davood Rostamy, Ehsan Mottaghi, Stability analysis of a fractional-order epidemics model with multiple equilibriums, Advances in Difference Equations, 2016, 2016, 1, 10.1186/s13662-016-0905-4
• 11. Yves Emvudu, Danhrée Bongor, Rodoumta Koïna, Mathematical analysis of HIV/AIDS stochastic dynamic models, Applied Mathematical Modelling, 2016, 40, 21-22, 9131, 10.1016/j.apm.2016.05.007
• 12. Masaaki Ishikawa, On the Simulation Analysis in the Stochastic Endemic Model with Vaccination, Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications, 2010, 2010, 0, 134, 10.5687/sss.2010.134
• 13. A. Corberán-Vallet, F. J. Santonja, M. Jornet-Sanz, R.-J. Villanueva, Modeling Chickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model, Complexity, 2018, 2018, 1, 10.1155/2018/3060368
• 14. Chunjuan Zhu, Guangzhao Zeng, Yufeng Sun, The Threshold of a Stochastic SIRS Model with Vertical Transmission and Saturated Incidence, Discrete Dynamics in Nature and Society, 2017, 2017, 1, 10.1155/2017/5620301
• 15. Masaaki Ishikawa, Stability Analysis of the Stochastic Delayed Infectious Model with Vaccination, Transactions of the Institute of Systems, Control and Information Engineers, 2018, 31, 1, 1, 10.5687/iscie.31.1
• 16. Adnan Khan, Muhammad Hassan, Mudassar Imran, The Effects of a Backward Bifurcation on a Continuous Time Markov Chain Model for the Transmission Dynamics of Single Strain Dengue Virus, Applied Mathematics, 2013, 04, 04, 663, 10.4236/am.2013.44091
• 17. Yongli Cai, Yun Kang, Malay Banerjee, Weiming Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, Journal of Differential Equations, 2015, 259, 12, 7463, 10.1016/j.jde.2015.08.024
• 18. Masaaki Ishikawa, On the Stability Analysis of the Stochastic Infectious Model with Distributed Time Delay, Transactions of the Institute of Systems, Control and Information Engineers, 2018, 31, 4, 129, 10.5687/iscie.31.129
• 19. M Simões, M.M Telo da Gama, A Nunes, Stochastic fluctuations in epidemics on networks, Journal of The Royal Society Interface, 2008, 5, 22, 555, 10.1098/rsif.2007.1206
• 20. Masaaki Ishikawa, Mathematical Analysis of the Stochastic Delayed Epidemic Models with Reinfection, Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications, 2018, 2018, 0, 147, 10.5687/sss.2018.147
• 21. Priscilla E. Greenwood, Luis F. Gordillo, , Mathematical and Statistical Estimation Approaches in Epidemiology, 2009, Chapter 2, 31, 10.1007/978-90-481-2313-1_2
• 22. Ariel Cintrón-Arias, Fabio Sánchez, Xiaohong Wang, Carlos Castillo-Chavez, Dennis M. Gorman, Paul J. Gruenewald, , Mathematical and Statistical Estimation Approaches in Epidemiology, 2009, Chapter 14, 343, 10.1007/978-90-481-2313-1_14
• 23. Masaaki Ishikawa, Stability Analyses of the Stochastic Delayed Infectious Models with Reinfection, Transactions of the Institute of Systems, Control and Information Engineers, 2019, 32, 1, 1, 10.5687/iscie.32.1
• 24. Ganna Rozhnova, Ana Nunes, Modelling the long-term dynamics of pre-vaccination pertussis, Journal of The Royal Society Interface, 2012, 9, 76, 2959, 10.1098/rsif.2012.0432