Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft

  • Received: 01 December 2005 Accepted: 29 June 2018 Published: 01 February 2006
  • MSC : 92C10.

  • In this paper, we investigate the behavior of the pulsatile blood flow in a stenosed right coronary artery with a bypass graft. The human blood is assumed to be a non-Newtonian fluid and its viscous behavior is described by the Carreau model. The transient phenomena of blood flow though the stenosed region and the bypass grafts are simulated by solving the three dimensional unsteady Navier-Stokes equations and continuity equation. The influence of the bypass angle on the flow interaction between the jet flow from the native artery and the flow from the bypass graft is investigated. Distributions of velocity, pressure and wall shear stresses are determined under various conditions. The results show that blood pressure in the stenosed artery drops dramatically in the stenosis area and that high wall shear stresses occur around the stenosis site.

    Citation: B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury. Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft[J]. Mathematical Biosciences and Engineering, 2006, 3(2): 371-383. doi: 10.3934/mbe.2006.3.371

    Related Papers:

  • In this paper, we investigate the behavior of the pulsatile blood flow in a stenosed right coronary artery with a bypass graft. The human blood is assumed to be a non-Newtonian fluid and its viscous behavior is described by the Carreau model. The transient phenomena of blood flow though the stenosed region and the bypass grafts are simulated by solving the three dimensional unsteady Navier-Stokes equations and continuity equation. The influence of the bypass angle on the flow interaction between the jet flow from the native artery and the flow from the bypass graft is investigated. Distributions of velocity, pressure and wall shear stresses are determined under various conditions. The results show that blood pressure in the stenosed artery drops dramatically in the stenosis area and that high wall shear stresses occur around the stenosis site.


    加载中
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1902) PDF downloads(629) Cited by(17)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog