Energy Considerations in a Model of Nematode Sperm Crawling

  • Received: 01 November 2005 Accepted: 29 June 2018 Published: 01 February 2006
  • MSC : 92C17, 35B35, 35R35.

  • In this paper we propose a mathematical model for nematode sperm cell crawling. The model takes into account both force and energy balance in the process of lamellipodium protrusion and cell nucleus drag. It is shown that by specifying the (possibly variable) efficiency of the major sperm protein biomotor one completely determines a self-consistent problem of the lamellipodium-nucleus motion. The model thus obtained properly accounts for the feedback of the load on the lamellipodium protrusion, which in general should not be neglected. We study and analyze the steady crawling state for a particular efficiency function and find that all nonzero modes, up to a large magnitude, are linearly asymptotically stable, thus reproducing the experimental observations of the long periods of steady crawling exhibited by the nematode sperm cells.

    Citation: Borys V. Bazaliy, Ya. B. Bazaliy, Avner Friedman, Bei Hu. Energy Considerations in a Model of Nematode Sperm Crawling[J]. Mathematical Biosciences and Engineering, 2006, 3(2): 347-370. doi: 10.3934/mbe.2006.3.347

    Related Papers:

    [1] Teng Li, Xiang Chen, Shuai Cao, Xu Zhang, Xun Chen . Human hands-and-knees crawling movement analysis based on time-varying synergy and synchronous synergy theories. Mathematical Biosciences and Engineering, 2019, 16(4): 2492-2513. doi: 10.3934/mbe.2019125
    [2] Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020
    [3] Wenhao Chen, Guo Lin, Shuxia Pan . Propagation dynamics in an SIRS model with general incidence functions. Mathematical Biosciences and Engineering, 2023, 20(4): 6751-6775. doi: 10.3934/mbe.2023291
    [4] Shangbing Ai, Zhian Wang . Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences and Engineering, 2015, 12(4): 717-737. doi: 10.3934/mbe.2015.12.717
    [5] Xiao-Min Huang, Xiang-ShengWang . Traveling waves of di usive disease models with time delay and degeneracy. Mathematical Biosciences and Engineering, 2019, 16(4): 2391-2410. doi: 10.3934/mbe.2019120
    [6] Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141
    [7] Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379
    [8] M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83
    [9] F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev . "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences and Engineering, 2008, 5(2): 239-260. doi: 10.3934/mbe.2008.5.239
    [10] Kah Phooi Seng, Fenglu Ge, Li-minn Ang . Mathematical modeling and mining real-world Big education datasets with application to curriculum mapping. Mathematical Biosciences and Engineering, 2021, 18(4): 4450-4460. doi: 10.3934/mbe.2021225
  • In this paper we propose a mathematical model for nematode sperm cell crawling. The model takes into account both force and energy balance in the process of lamellipodium protrusion and cell nucleus drag. It is shown that by specifying the (possibly variable) efficiency of the major sperm protein biomotor one completely determines a self-consistent problem of the lamellipodium-nucleus motion. The model thus obtained properly accounts for the feedback of the load on the lamellipodium protrusion, which in general should not be neglected. We study and analyze the steady crawling state for a particular efficiency function and find that all nonzero modes, up to a large magnitude, are linearly asymptotically stable, thus reproducing the experimental observations of the long periods of steady crawling exhibited by the nematode sperm cells.


  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2456) PDF downloads(477) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog