Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Some simple epidemic models

1. Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2

The SARS epidemic of 2002-3 led to the study of epidemic models including management measures and other generalizations of the original 1927 epidemic model of Kermack and McKendrick. We consider some natural extensions of the Kermack-McKendrick model and show that they share the main properties of the original model.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Kermack-McKendrick; vaccination.; epidemic models

Citation: Fred Brauer. Some simple epidemic models. Mathematical Biosciences and Engineering, 2006, 3(1): 1-15. doi: 10.3934/mbe.2006.3.1

 

This article has been cited by

  • 1. Maria Kiskowski, Gerardo Chowell, Modeling household and community transmission of Ebola virus disease: Epidemic growth, spatial dynamics and insights for epidemic control, Virulence, 2016, 7, 2, 163, 10.1080/21505594.2015.1076613
  • 2. N. Ringa, C.T. Bauch, Impacts of constrained culling and vaccination on control of foot and mouth disease in near-endemic settings: A pair approximation model, Epidemics, 2014, 9, 18, 10.1016/j.epidem.2014.09.008
  • 3. Brandy Rapatski, Juan Tolosa, Modeling and analysis of the San Francisco City Clinic Cohort (SFCCC) HIV-epidemic including treatment, Mathematical Biosciences and Engineering, 2014, 11, 3, 599, 10.3934/mbe.2014.11.599
  • 4. N. Ringa, C.T. Bauch, Dynamics and control of foot-and-mouth disease in endemic countries: A pair approximation model, Journal of Theoretical Biology, 2014, 357, 150, 10.1016/j.jtbi.2014.05.010
  • 5. Yali Yang, Yiqun Li, Jianquan Li, Epidemic characteristics of two classic models and the dependence on the initial conditions, Mathematical Biosciences and Engineering, 2016, 13, 5, 999, 10.3934/mbe.2016027
  • 6. Baltazar Espinoza, Victor Moreno, Derdei Bichara, Carlos Castillo-Chavez, , Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, 2016, Chapter 9, 123, 10.1007/978-3-319-40413-4_9
  • 7. Jean M. Tchuenche, A $$\textit{SIR}$$ SIR epidemic model with incubation period, Afrika Matematika, 2015, 26, 1-2, 77, 10.1007/s13370-013-0189-8
  • 8. O. Sharomi, C.N. Podder, A.B. Gumel, E.H. Elbasha, James Watmough, Role of incidence function in vaccine-induced backward bifurcation in some HIV models, Mathematical Biosciences, 2007, 210, 2, 436, 10.1016/j.mbs.2007.05.012
  • 9. SOPHIA R.-J. JANG, BACKWARD BIFURCATION IN A DISCRETE SIS MODEL WITH VACCINATION, Journal of Biological Systems, 2008, 16, 04, 479, 10.1142/S0218339008002630
  • 10. Petra Klepac, Hal Caswell, The stage-structured epidemic: linking disease and demography with a multi-state matrix approach model, Theoretical Ecology, 2011, 4, 3, 301, 10.1007/s12080-010-0079-8
  • 11. Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu, A model for influenza with vaccination and antiviral treatment, Journal of Theoretical Biology, 2008, 253, 1, 118, 10.1016/j.jtbi.2008.02.026
  • 12. Jeehyun Lee, Jungeun Kim, Hee-Dae Kwon, Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates, Journal of Theoretical Biology, 2013, 317, 310, 10.1016/j.jtbi.2012.10.032
  • 13. Julien Arino, Fred Brauer, P van den Driessche, James Watmough, Jianhong Wu, Simple models for containment of a pandemic, Journal of The Royal Society Interface, 2006, 3, 8, 453, 10.1098/rsif.2006.0112
  • 14. M Nuño, G Chowell, A.B Gumel, Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: scenarios for the US, UK and the Netherlands, Journal of The Royal Society Interface, 2007, 4, 14, 505, 10.1098/rsif.2006.0186
  • 15. R. KRUMKAMP, M. KRETZSCHMAR, J. W. RUDGE, A. AHMAD, P. HANVORAVONGCHAI, J. WESTENHOEFER, M. STEIN, W. PUTTHASRI, R. COKER, Health service resource needs for pandemic influenza in developing countries: a linked transmission dynamics, interventions and resource demand model, Epidemiology and Infection, 2011, 139, 01, 59, 10.1017/S0950268810002220
  • 16. Ping Yan, Gerardo Chowell, , Quantitative Methods for Investigating Infectious Disease Outbreaks, 2019, Chapter 8, 273, 10.1007/978-3-030-21923-9_8
  • 17. Nicholas J. Watkins, Cameron Nowzari, George J. Pappas, Robust Economic Model Predictive Control of Continuous-Time Epidemic Processes, IEEE Transactions on Automatic Control, 2020, 65, 3, 1116, 10.1109/TAC.2019.2919136
  • 18. Marco Cremonini, Samira Maghool, The Unknown of the Pandemic: An Agent-based Model of Final Phase Risks, SSRN Electronic Journal , 2020, 10.2139/ssrn.3584368
  • 19. Carlos Castillo-Garsow, Carlos Castillo-Chavez, Sherry Woodley, A Preliminary Theoretical Analysis of a Research Experience for Undergraduates Community Model, PRIMUS, 2013, 23, 9, 860, 10.1080/10511970.2012.697099

Reader Comments

your name: *   your email: *  

Copyright Info: 2006, Fred Brauer, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved