AIMS Mathematics, 2020, 5(6): 6448-6456. doi: 10.3934/math.2020415.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Stability analysis for time delay systems via a generalized double integral inequality

1 School of Mathematics, Zunyi Normal University, Zunyi, Guizhou 563006, P. R. China
2 School of Mathematics Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China

This paper proposes a new stability condition for a class of time delay systems. Firstly, a generalized double integral inequality is obtained. Then, a less conservative stability criterion is proposed by using the double integral inequality and choosing some new Lyapunov-Krasovskii functionals. Finally, two numerical examples are proposed to show the effectiveness of our method.
  Figure/Table
  Supplementary
  Article Metrics

Keywords time delay systems; linear matrix inequality (LMI); double integral inequality; Lyapunov-Krasovskii functional (LKF)

Citation: Junkang Tian, Zerong Ren, Shouming Zhong. Stability analysis for time delay systems via a generalized double integral inequality. AIMS Mathematics, 2020, 5(6): 6448-6456. doi: 10.3934/math.2020415

References

  • 1. H. B. Zeng, Y. He, M. Mu, et al. Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE T. Automat. Contr., 60 (2015), 2768-2772.    
  • 2. Y. He, Q. G. Wang, L. Xie, et al. Further improvement of free-weighting matrices technique for systems with time-varying delay, IEEE T. Automat. Contr., 52 (2007), 293-299.    
  • 3. W. H. Chen, W. X. Zheng, Delay-dependent robust stabilization for uncertain neutral systems with distributed delays, Automatica, 43 (2007), 95-104.    
  • 4. H. B. Zeng, Y. He, M. Mu, et al. New results on stability ananlysis for systems with discrete distributed delay, Automatica, 60 (2015), 189-192.    
  • 5. K. Gu, J. Chen, V. Kharitonov, Stability of Time-Delay Systems, Springer Science & Business Media, 2003.
  • 6. L. V. Hien, H. Trinh, Refined Jensen-based ineuqality approach to stability analysis of time-delay systems, IET Control Theory A., 9 (2015), 2188-2194.    
  • 7. A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860-2866.    
  • 8. O. M. Kwon, M. J. Park, J. H. Park, et al. Improved results on stability of linear systems with time-varying delays via Wirtinger-based integral inequality, J. Franklin I., 351 (2015), 5386-5398.
  • 9. M. J. Park, O. M. Kwon, J. H. Park, et al. Stability of time-delay systems via Wirtinger-based double integral inequality, Automatica, 55 (2015), 204-208.    
  • 10. P. G. Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin I., 352 (2015), 1378-1396.    
  • 11. N. Zhao, C. Lin, B. Chen, et al. A new double integral inequlity and application to stability test for time-delay systems, Appl. Math. Lett., 65 (2017), 26-31.    
  • 12. J. Chen, S. Xu, W. Chen, et al. Two general integral inequalities and their applications to stability analysis for systems with time-varying delay, Int. J. Robust Nonlin., 201 (2016), 4088-4103.
  • 13. J. H. Kim, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, 64 (2016), 121-125.    
  • 14. J. Tian, Z. Ren, S. Zhong, A new integral inequality and application to stability of time-delay systems, Appl. Math. Lett., 101 (2010), 106058.
  • 15. J. Tian, Z. Ren, Stability analysis of systems with time-varying delays via an improved integral inequality, IEEE access, 8 (2020), 90889-90894.    
  • 16. H. B. Zeng, Y. He, M. Wu, et al. New results on stability analysis for systems with discrete distributed delay, Automatica, 60 (2015), 189-192.    
  • 17. K. Liu, A. Seuret, Y. Xia, Stability analysis of systems with time-varying delays via the secondorder Bessel-Legendre inequality, Automatica, 76 (2017), 138-142.    
  • 18. A. Seuret, F. Gouaisbaut, Hierarchy of LMI conditions for the stability analysis of time-delay systems, Syst. Control Lett., 81 (2015), 1-7.    
  • 19. A. Seuret, K. Liu, F. Gouaisbaut, Generalized reciprocally convex combination lemmas and its application to time-delay systems, Automatica, 95 (2018), 488-493.    
  • 20. J. Chen, J. H. Park, S. Xu, Stability analysis of systems with time varying delay: A quadraticpartitioning method, IET control Theory A., 13 (2019), 3184-3189.    
  • 21. C. K. Zhang, Y. He, L. Jiang, et al. Delay-dependent stability analysis of neural networks with timevarying delay:A generalized free-weighting-matrix approach, Appl. Math. Comput., 294 (2017), 102-120.
  • 22. H. B. Zeng, X. G. Liu, W. Wang, A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems, Appl. Math. Comput., 354 (2019), 1-8.    
  • 23. H. B. Zeng, X. G. Liu, W. Wang, et al. New results on stability analysis of systems with time-varying delays using a generalized free-matrix-based inequality, J. Franklin I., 356 (2019), 7312-7321.    
  • 24. Z. Zhang, Z. Quan, Global exponential stability via inequality technique for inertial BAM neural networks with time delays, Neurocomputing, 151 (2015), 1316-1326.    
  • 25. Z. Zhang, W. Liu, D. Zhou, Global asymptotic stability to a generalized Cohen-Grossberg BAM neural networks of neutral type delays, Neural Networks, 25 (2012), 94-105.    
  • 26. F. X. Wang, X. G. Liu, M. L. Tang, et al. Improved integral inequalities for stability analysis of delayed neural networks, Neurocomputing, 273 (2018), 178-189.    
  • 27. J. J. Wei, M. L. Tang, Stability analysis of several kinds of neural networks with time-varying delays (master's dissertation), Changsha, Central South University, 2018.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved