
AIMS Mathematics, 2020, 5(3): 17571778. doi: 10.3934/math.2020119
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The least common multiple of consecutive terms in a cubic progression
1 School of Mathematics and Computer Science, Panzhihua University, Panzhihua 617000, P. R. China
2 Mathematical College, Sichuan University, Chengdu 610064, P.R. China
Received: , Accepted: , Published:
References
1. P. Bateman, J. Kalb and A. Stenger, A limit involving least common multiples, Amer. Math. Monthly, 109 (2002), 393394.
2. P. L. Chebyshev, Memoire sur les nombres premiers, J. Math. Pures Appl., 17 (1852), 366390.
3. B. Farhi, Minorations non triviales du plus petit commun multiple de certaines suites finies d'entiers, C. R. Acad. Sci. Paris, Ser. I, 341 (2005), 469474.
4. B. Farhi, Nontrivial lower bounds for the least common multiple of some finite sequences of integers, J. Number Theory, 125 (2007), 393411.
5. B. Farhi, An identity involving the least common multiple of binomial coeffcients and its application, Amer. Math. Monthly, 116 (2009), 836839.
6. B. Farhi, On the derivatives of the integervalued polynomials, arXiv:1810.07560.
7. B. Farhi and D. Kane, New results on the least common multiple of consecutive integers, Proc. Amer. Math. Soc., 137 (2009), 19331939.
8. C. J. Goutziers, On the least common multiple of a set of integers not exceeding N, Indag. Math., 42 (1980), 163169.
9. D. Hanson, On the product of the primes, Canad. Math. Bull., 15 (1972), 3337.
10. S. F. Hong and W. D. Feng, Lower bounds for the least common multiple of finite arithmetic progressions, C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 695698.
11. S. F. Hong, Y. Y. Luo, G. Y. Qian, et al. Uniform lower bound for the least common multiple of a polynomial sequence, C.R. Acad. Sci. Paris, Ser. I, 351 (2013), 781785.
12. S. F. Hong and G. Y. Qian, The least common multiple of consecutive arithmetic progression terms, Proc. Edinb. Math. Soc., 54 (2011), 431441.
13. S. F. Hong and G. Y. Qian, The least common multiple of consecutive quadratic progression terms, Forum Math., 27 (2015), 33353396.
14. S. F. Hong and G. Y. Qian, New lower bounds for the least common multiple of polynomial sequences, J. Number Theory, 175 (2017), 191199.
15. S. F. Hong, G. Y. Qian and Q. R. Tan, The least common multiple of a sequence of products of linear polynomials, Acta Math. Hungar., 135 (2012), 160167.
16. S. F. Hong and Y. J. Yang, On the periodicity of an arithmetical function, C. R. Acad. Sci. Paris Sér. I, 346 (2008), 717721.
17. S. F. Hong and Y. J. Yang, Improvements of lower bounds for the least common multiple of arithmetic progressions, Proc. Amer. Math. Soc., 136 (2008), 41114114.
18. L.K. Hua, Introduction to number theory, SpringerVerlag, Berlin Heidelberg, 1982.
19. N. Koblitz, pAdic numbers, padic analysis, and zetafunctions, SpringerVerlag, Heidelberg, 1977.
20. M. Nair, On Chebyshevtype inequalities for primes, Amer. Math. Monthly, 89 (1982), 126129.
21. J. Neukirch, Algebraic number theory, SpringerVerlag, 1999.
22. S. M. Oon, Note on the lower bound of least common multiple, Abstr. Appl. Anal., 2013.
23. G. Y. Qian and S. F. Hong, Asymptotic behavior of the least common multiple of consecutive arithmetic progression terms, Arch. Math., 100 (2013), 337345.
24. G. Y. Qian, Q. R. Tan and S. F. Hong, The least common multiple of consecutive terms in a quadratic progression, Bull. Aust. Math. Soc., 86 (2012), 389404.
25. R. J. Wu, Q. R. Tan and S. F. Hong, New lower bounds for the least common multiple of arithmetic progressions, Chinese Annals of Mathematics, Series B, 34 (2013), 861864.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)