Research article

Several explicit and recursive formulas for generalized Motzkin numbers

  • Received: 06 November 2019 Accepted: 09 January 2020 Published: 20 January 2020
  • MSC : Primary: 05A15; Secondary: 05A19, 05A20, 11B37, 11B83, 34A05

  • In the paper, the authors find two explicit formulas and recover a recursive formula for generalized Motzkin numbers. Consequently, the authors deduce two explicit formulas and a recursive formula for the Motzkin numbers, the Catalan numbers, and the restricted hexagonal numbers respectively.

    Citation: Feng Qi, Bai-Ni Guo. Several explicit and recursive formulas for generalized Motzkin numbers[J]. AIMS Mathematics, 2020, 5(2): 1333-1345. doi: 10.3934/math.2020091

    Related Papers:

  • In the paper, the authors find two explicit formulas and recover a recursive formula for generalized Motzkin numbers. Consequently, the authors deduce two explicit formulas and a recursive formula for the Motzkin numbers, the Catalan numbers, and the restricted hexagonal numbers respectively.


    加载中


    [1] N. Bourbaki, Elements of Mathematics: Functions of a Real Variable: Elementary Theory, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2004.
    [2] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Springer Science & Business Media, 1974.
    [3] R. Donaghey and L. W. Shapiro, Motzkin numbers, J. Combin. Theory Ser. A, 23 (1977), 291-301. doi: 10.1016/0097-3165(77)90020-6
    [4] F. Harary and R. C. Read, The enumeration of tree-like polyhexes, P. Edinburgh Math. Soc., 17 (1970), 1-13. doi: 10.1017/S0013091500009135
    [5] T. Koshy, Catalan Numbers with Applications, Oxford University Press, Oxford, 2009.
    [6] V. V. Kruchinin, Derivation of Bell polynomials of the second kind, arXiv:1104.5065, 2011.
    [7] D. V. Kruchinin and V. V. Kruchinin, Application of a composition of generating functions for obtaining explicit formulas of polynomials, J. Math. Anal. Appl., 404 (2013), 161-171. doi: 10.1016/j.jmaa.2013.03.009
    [8] V. V. Kruchinin and D. V. Kruchinin, Composita and its properties, J. Anal. Number Theory, 2 (2014), 37-44. doi: 10.12691/tjant-2-2-2
    [9] T. Lengyel, Exact p-adic orders for differences of Motzkin numbers, Int. J. Number Theory, 10 (2014), 653-667. doi: 10.1142/S1793042113501157
    [10] T. Lengyel, On divisibility properties of some differences of Motzkin numbers, Ann. Math. Inform., 41 (2013), 121-136.
    [11] F.-F. Liu, X.-T. Shi, F. Qi, A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers and function, Glob. J. Math. Anal., 3 (2015), 140-144. doi: 10.14419/gjma.v3i4.5187
    [12] T. Mansour, M. Schork, Y. Sun, Motzkin numbers of higher rank: generating function and explicit expression, J. Int. Seq., 10 (2007), 1-11.
    [13] T. Mansour and Y. Sun, Bell polynomials and k-generalized Dyck paths, Discrete Appl. Math., 156 (2008), 2279-2292. doi: 10.1016/j.dam.2007.10.009
    [14] T. Mansour and Y. Sun, Dyck paths and partial Bell polynomials, Australas. J. Combin., 42 (2008), 285-297.
    [15] P. Natalini and P. E. Ricci, Higher order Bell polynomials and the relevant integer sequences, Appl. Anal. Discrete Math., 11 (2017), 327-339. doi: 10.2298/AADM1702327N
    [16] F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput., 268 (2015), 844-858.
    [17] F. Qi, Parametric integrals, the Catalan numbers, and the beta function, Elemente Der Mathematik, 72 (2017), 103-110. doi: 10.4171/EM/332
    [18] F. Qi, Simplifying coefficients in differential equations related to generating functions of reverse Bessel and partially degenerate Bell polynomials, Bol. Soc. Paran. Mat., 39 (2021), in press.
    [19] F. Qi, A. Akkurt, H. Yildirim, Catalan numbers, k-gamma and k-beta functions, and parametric integrals, J. Comput. Anal. Appl., 25 (2018), 1036-1042.
    [20] F. Qi, V. Čerňanová, Y. S. Semenov, Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 81 (2019), 123-136.
    [21] F. Qi, V. Čerňanová, X.-T. Shi, et al. Some properties of central Delannoy numbers, J. Comput. Appl. Math., 328 (2018), 101-115. doi: 10.1016/j.cam.2017.07.013
    [22] F. Qi and R. J. Chapman, Two closed forms for the Bernoulli polynomials, J. Number Theory, 159 (2016), 89-100. doi: 10.1016/j.jnt.2015.07.021
    [23] F. Qi and B.-N. Guo, Explicit formulas and recurrence relations for higher order Eulerian polynomials, Indag. Math., 28 (2017), 884-891. doi: 10.1016/j.indag.2017.06.010
    [24] F. Qi and B.-N. Guo, Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials, Mediterr. J. Math., 14 (2017), 140.
    [25] F. Qi and B.-N. Guo, Integral representations of the Catalan numbers and their applications, Mathematics, 5 (2017), 40.
    [26] F. Qi and B.-N. Guo, Logarithmically complete monotonicity of a function related to the Catalan- Qi function, Acta Univ. Sapientiae Math., 8 (2016), 93-102. doi: 10.1515/ausm-2016-0006
    [27] F. Qi and B.-N. Guo, Logarithmically complete monotonicity of Catalan-Qi function related to Catalan numbers, Cogent Mathematics & Statistics, 3 (2016), 1179379.
    [28] F. Qi and B.-N. Guo, Several explicit and recursive formulas for the generalized Motzkin numbers, Preprints, 2017.
    [29] F. Qi and B.-N. Guo, Some properties and generalizations of the Catalan, Fuss, and Fuss-Catalan numbers. In: Mathematical Analysis and Applications: Selected Topics, First Edition, 101-133.
    [30] F. Qi and B.-N. Guo, Viewing some ordinary differential equations from the angle of derivative polynomials, 2016.
    [31] F. Qi, M. Mahmoud, X.-T. Shi, et al. Some properties of the Catalan-Qi function related to the Catalan numbers, SpringerPlus, 5 (2016), 1126.
    [32] F. Qi, D.-W. Niu, B.-N. Guo, Some identities for a sequence of unnamed polynomials connected with the Bell polynomials, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113 (2019), 557-567.
    [33] F. Qi, D.-W. Niu, D. Lim, et al. Closed formulas and identities for the Bell polynomials and falling factorials, Contrib. Discrete Math., 14 (2019), 1-11.
    [34] F. Qi, X.-T. Shi, B.-N. Guo, Two explicit formulas of the Schröder numbers, Integers, 16 (2016), A23.
    [35] F. Qi, X.-T. Shi, F.-F. Liu, et al. Several formulas for special values of the Bell polynomials of the second kind and applications, J. Appl. Anal. Comput., 7 (2017), 857-871.
    [36] F. Qi, X.-T. Shi, M. Mahmoud, et al. Schur-convexity of the Catalan-Qi function related to the Catalan numbers, Tbilisi Math. J., 9 (2016), 141-150. doi: 10.1515/tmj-2016-0026
    [37] F. Qi, X.-T. Shi, M. Mahmoud, et al. The Catalan numbers: a generalization, an exponential representation, and some properties, J. Comput. Anal. Appl., 23 (2017), 937-944.
    [38] F. Qi and Y.-H. Yao, Simplifying coefficients in differential equations for generating function of Catalan numbers, J. Taibah Univ. Sci., 13 (2019), 947-950. doi: 10.1080/16583655.2019.1663782
    [39] F. Qi and M.-M. Zheng, Explicit expressions for a family of the Bell polynomials and applications, Appl. Math. Comput., 258 (2015), 597-607.
    [40] F. Qi, Q. Zou, B.-N. Guo, The inverse of a triangular matrix and several identities of the Catalan numbers, Appl. Anal. Discrete Math., 13 (2019), 518-541. doi: 10.2298/AADM190118018Q
    [41] X.-T. Shi, F.-F. Liu, F. Qi, An integral representation of the Catalan numbers, Glob. J. Math. Anal., 3 (2015), 130-133. doi: 10.14419/gjma.v3i3.5055
    [42] Z.-W. Sun, Congruences involving generalized central trinomial coefficients, Sci. China Math., 57 (2014), 1375-1400. doi: 10.1007/s11425-014-4809-z
    [43] Y. Wang and Z.-H. Zhang, Combinatorics of generalized Motzkin numbers, J. Integer Seq., 18 (2015), 1-9.
    [44] C.-F. Wei and F. Qi, Several closed expressions for the Euler numbers, J. Inequal. Appl., 2015 (2015), 219.
    [45] C. S. Withers and S. Nadarajah, Moments and cumulants for the complex Wishart, J. Multivariate Anal., 112 (2012), 242-247. doi: 10.1016/j.jmva.2012.05.002
    [46] C. S. Withers and S. Nadarajah, Multivariate Bell polynomials, Int. J. Comput. Math., 87 (2010), 2607-2611. doi: 10.1080/00207160802702418
    [47] C. S. Withers and S. Nadarajah, Multivariate Bell polynomials, series, chain rules, moments and inversion, Util. Math., 83 (2010), 133-140.
    [48] C. S. Withers and S. Nadarajah, Multivariate Bell polynomials and their applications to powers and fractionary iterates of vector power series and to partial derivatives of composite vector functions, Appl. Math. Comput., 206 (2008), 997-1004.
    [49] J.-L. Zhao and F. Qi, Two explicit formulas for the generalized Motzkin numbers, J. Inequal. Appl., 2017 (2017), 44.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2061) PDF downloads(333) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog