AIMS Mathematics, 2020, 5(1): 111-139. doi: 10.3934/math.2020008

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Sufficiency for singular trajectories in the calculus of variations

Facultad de Ciencias, Universidad Nacional Autónoma de México, Departamento de Matemáticas, Ciudad de México 04510, México

For calculus of variations problems of Bolza with variable end-points, nonlinear inequality and equality isoperimetric constraints and nonlinear inequality and equality mixed pointwise constraints, sufficient conditions for strong minima are derived. The main novelty of the new sufficiency results presented in this article concerns their applicability to cases in which the derivatives of the extremals to be optimal solutions are not necessarily continuous nor piecewise continuous but only essentially bounded and they do not necessarily satisfy the standard strengthened Legendre condition but only the corresponding necessary condition.
  Figure/Table
  Supplementary
  Article Metrics

References

1. G. A. Bliss, Lectures on the Calculus of Variations, Chicago: University of Chicago Press, 1946.

2. O. Bolza, Lectures on the Calculus of Variations, New York: Chelse Press, 1961.

3. U. Brechtken-Manderscheid, Introduction to the Calculus of Variations, London: Chapman & Hall, 1983.

4. L. Cesari, Optimization-Theory and Applications, Problems with Ordinary Differential Equations, New York: Springer-Verlag, 1983.

5. F. H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, New York: Springer-Verlag, 2013.

6. G. M. Ewing, Calculus of Variations with Applications, New York: Dover, 1985.

7. I. M. Gelfand, S. V. Fomin, Calculus of Variations, New Jersey: Prentice-Hall, 1963.

8. M. Giaquinta, S. Hildebrant, Calculus of Variations I, New York: Springer-Verlag, 2004.

9. M. Giaquinta, S. Hildebrant, Calculus of Variations II, New York: Springer-Verlag, 2004.

10. M. R. Hestenes, Calculus of Variations and Optimal Control Theory, New York: John Wiley & Sons, 1966.

11. G. Leitmann, The Calculus of Variations and Optimal Control, New York: Plenum Press, 1981.

12. P. D. Loewen, Second-order sufficiency criteria and local convexity for equivalent problems in the calculus of variations, J. Math. Anal. Appl., 146 (1990), 512-522.    

13. A. A. Milyutin, N. P. Osmolovskii, Calculus of Variations and Optimal Control, Rhode Island: American Mathematical Society, 1998.

14. M. Morse, Variational Analysis: Critical Extremals and Sturmian Extensions, New York: John Wiley & Sons, 1973.

15. F. Rindler, Calculus of Variations, Coventry: Springer, 2018.

16. J. L. Troutman, Variational Calculus with Elementary Convexity, New York: Springer-Verlag, 1983.

17. F. Y. M. Wan, Introduction to the Calculus of Variations and its Applications, New York: Chapman & Hall, 1995.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved