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1. Introduction

Necessary and sufficient conditions for optimality play a crucial role in solving problems in the
calculus of variations. The main necessary conditions for such problems are the well-known
conditions of Euler, Weierstrass, Legendre and Jacobi. In many cases, depending on the smoothness
of the assumptions, Euler’s necessary condition corresponds to a second order differential equation
which restricts solutions to lie in a family of trajectories with certain uniformity properties. Also, the
necessary condition of Jacobi cannot be applied when the extremal has corners and is not nonsingular.
This is an unfortunate feature since, in general, the admissible arcs or trajectories which are
candidates for solving the problem are neither nonsingular nor smooth.

On the other hand, one fundamental aspect of the theory of sufficient conditions for optimality
consists in slightly strengthening the necessary conditions. Concretely, if an admissible arc satisfies
the strengthened conditions of Euler, Legendre and Jacobi, then it is a strict weak minimum.
Additionally, if this admissible arc also satisfies the strengthened condition of Weierstrass, then it is a
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strict strong minimum. Some of the techniques used to obtain sufficiency include the construction of a
Mayer field on which the extremals are independent of the path with respect to an invariant integral
commonly called the Hilbert integral, the existence of a symmetric solution of the matrix Riccati
inequality associated with the problem, a verification function satisfying the Hamilton-Jacobi
equation, a quadratic function that satisfies a Hamilton-Jacobi inequality, the nonexistence of
conjugate points on the underlying half-closed time interval, or the incorporation of some convexity
arguments on the functions delimiting the calculus of variations problem (see for example [1–17] and
references therein).

It is important to mention that the smoothness and the nonsingularity assumptions are crucial in the
sufficiency theories mentioned above. In other words, the classical sufficiency theory in the calculus of
variations, in general, may not give a response when the extremal under consideration is singular or has
corners. In fact, as mentioned in [6], there is a gap between the set of necessary and sufficient conditions
and [6, Section 3.7] is entirely devoted to the study of some problems for which the nonsingularity
assumption fails. There, one finds a method which is only applicable to particular examples and may
not hold in general, since “although this algorithm sheds light on the theory, it provides no panacea.
Indeed there are no panaceas.” Additionally, we refer the reader to [13], where the importance of the
nonsingularity assumption in the classical calculus of variations sufficiency theory is fully explained.

In this paper we derive two new sufficiency results which provide sufficient conditions for strong
local minima in certain classes of parametric and nonparametric calculus of variations problems of
Bolza with variable or free end-points, inequality and equality nonlinear isoperimetric constrains, and
nonlinear mixed pointwise inequality and equality constraints. The main novelty of our new sufficient
theorems concerns their applicability to cases in which the extremals under consideration may be
singular and nonsmooth, that is, the strengthened condition of Legendre and the continuity of the
derivative of the proposed extremal are no longer required. More precisely, given an admissible
extremal whose derivative is not continuous nor piecewise continuous but only essentially bounded,
the elements comprising the new sufficiency theorems are the classical transversality condition, a
crucial inequality which arises from the original algorithm used to prove the main result of the article,
the necessary condition of Legendre, but not its strengthened version, the positivity of the second
variation over the set of all nonnul admissible variations, and three refined Weierstrass conditions
which are related to the functions delimiting the problems.

Another distinguishing characteristic of the main sufficiency result of the nonparametric calculus of
variations problem presented in this paper is the fact that the initial and final end-points of the states
are completely free, that is, they are not only variable end-points but they may belong to any set which
is not necessarily a smooth manifold described by some functions which usually involve some type of
equality or inequality conditions.

The paper is organized as follows. In Section 2 we pose the parametric calculus of variations
problem we shall deal with together with some basic definitions and the statement of the main result
of the article. In Section 3 we enunciate the nonparametric calculus of variations problem we shall
study together with some basic definitions and a corollary which is also one of the main results of the
paper. Section 4 is devoted to state two auxiliary lemmas in which the proof of the theorem is strongly
based. Section 5 is dedicated to the proof of the main theorem of the article. In Section 6 we prove
the lemmas given in Section 4 and, in the final section, we provide an example which shows how the
sufficient theory developed in this paper widens the range of applicability of the classical calculus of
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variations theory.

2. Statement of a parametric problem of Bolza and the main result

Suppose we are given an interval T := [t0, t1] in R, and functions l(b) : Rp → R, lγ(b) : Rp → R
(γ = 1, . . . ,K), Ψi(b) : Rp → Rn (i = 0, 1), L(t, x, ẋ) : T × Rn × Rn → R, Lγ(t, x, ẋ) : T × Rn × Rn → R
(γ = 1, . . . ,K) and ϕ(t, x, ẋ) : T × Rn × Rn → Rs. Set

R := {(t, x, ẋ) ∈ T × Rn × Rn | ϕα(t, x, ẋ) ≤ 0 (α ∈ R), ϕβ(t, x, ẋ) = 0 (β ∈ S )}

where R := {1, . . . , r} and S := {r + 1, . . . , s} (r = 0, 1, . . . , s). If r = 0 then R = ∅ and we disregard
statements involving ϕα. Similarly, if r = s then S = ∅ and we disregard statements involving ϕβ.

It will be assumed throughout the paper that L, Lγ (γ = 1, . . . ,K) and ϕ = (ϕ1, . . . , ϕs) have first
and second derivatives with respect to x and ẋ. Moreover, we shall assume that the functions l, lγ
(γ = 1, . . . ,K) and Ψi (i = 0, 1) are of class C2 on Rp. Also, if we denote by c(t, x, ẋ) either L(t, x, ẋ),
Lγ(t, x, ẋ) (γ = 1, . . . ,K), ϕ(t, x, ẋ) or any of its partial derivatives of order less than or equal to two with
respect to x and ẋ, we shall assume that ifC is any bounded subset of T×Rn×Rn, then |c(C)| is a bounded
subset of R. Additionally, we shall assume that if {(Γq,Λq)} is any sequence in AC(T ; Rn) × L1(T ; Rn)
such that for some U ⊂ T measurable and some {(Γ0,Λ0)} ∈ AC(T ; Rn) × L∞(T ; Rn), (Γq(t),Λq(t)) →
(Γ0(t),Λ0(t)) uniformly on U, then for all q ∈ N, c(t,Γq(t),Λq(t)) is measurable on U and

c(t,Γq(t),Λq(t))→ c(t,Γ0(t),Λ0(t)) uniformly on U.

Note that all conditions above concerning the functions L, Lγ (γ = 1, . . . ,K) and ϕ, are satisfied if
the functions L, Lγ (γ = 1, . . . ,K), ϕ and their first and second derivatives with respect to x and ẋ are
continuous on T × Rn × Rn.

Set
X := AC(T ; Rn), Us := L∞(T ; Rs), A := X × Rp.

We shall use the notation xb to denote any element xb := (x, b) ∈ A. Let B any subset of Rp which
we shall call the set of parameters. The parametric calculus of variations problem we shall deal with,
denoted by (P), is that of minimizing the functional

I(xb) := l(b) +

∫ t1

t0
L(t, x(t), ẋ(t))dt

over all xb ∈ A satisfying the constraints

c(t, x(t), ẋ(t)) is integrable on T .
b ∈ B.
x(ti) = Ψi(b) for i = 0, 1.
Ii(xb) := li(b) +

∫ t1
t0

Li(t, x(t), ẋ(t))dt ≤ 0 (i = 1, . . . , k).

I j(xb) := l j(b) +
∫ t1

t0
L j(t, x(t), ẋ(t))dt = 0 ( j = k + 1, . . . ,K).

(t, x(t), ẋ(t)) ∈ R (a.e. in T ).

Elements b = (b1, . . . , bp)∗ (the notation ∗ denotes transpose) in B will be called parameters, elements
xb inA will be called arcs or trajectories, and a trajectory xb is admissible if it satisfies the constraints.
The notation x0b0 refers to an element (x0, b0) ∈ A.
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Let us now introduce some definitions which will be used throughout the paper.
• An arc x0b0 solves (P) if it is admissible and I(x0b0) ≤ I(xb) for all admissible arcs xb. For strong

local minima, an admissible arc x0b0 is called a strong minimum of (P) if it is a minimum of I relative
to the following norm

‖xb‖ := |b| + sup
t∈T
|x(t)| = |b| + ‖x‖C,

that is, if for some ε > 0, I(x0b0) ≤ I(xb) for all admissible arcs satisfying ‖xb − x0b0‖ < ε.
• For all x ∈ X, we use the notation (x̃(t)) in order to represent (t, x(t), ẋ(t)). Also, (x̃0(t)) represents

(t, x0(t), ẋ0(t)).
• Given K real numbers λ1, . . . , λK , for any xb admissible define the functional I0 by

I0(xb) := I(xb) +

K∑
γ=1

λγIγ(xb) = l0(b) +

∫ t1

t0
L0(x̃(t))dt,

where l0 : Rp → R is given by

l0(b) := l(b) +

K∑
γ=1

λγlγ(b),

and L0 : T × Rn × Rn → R is given by

L0(t, x, ẋ) := L(t, x, ẋ) +

K∑
γ=1

λγLγ(t, x, ẋ).

• Given λ1, . . . , λK , for all (t, x, ẋ, ρ, µ) ∈ T × Rn × Rn × Rn × Rs, define the Hamiltonian of the
problem by

H(t, x, ẋ, ρ, µ) := 〈ρ, ẋ〉 − L0(t, x, ẋ) − 〈µ, ϕ(t, x, ẋ)〉,

where ρ ∈ Rn denotes the adjoint variable and µ ∈ Rs is the associated multiplier of the mixed
constraints.
• Given (ρ, µ) ∈ X×Us, and λ1, . . . , λK , for all (t, x, ẋ) ∈ T ×Rn ×Rn, define the following function

associated to the Hamiltonian,

F0(t, x, ẋ) := −H(t, x, ẋ, ρ(t), µ(t)) − 〈ρ̇(t), x〉.

• Given (ρ, µ) ∈ X ×Us and λ1, . . . , λK , for any xb admissible define the functional J0 by

J0(xb) := 〈ρ(t1), x(t1)〉 − 〈ρ(t0), x(t0)〉 + l0(b) +

∫ t1

t0
F0(x̃(t))dt.

• The notation yβ refers to any element (y, β) inA.
•Given (ρ, µ) ∈ X×Us, and λ1, . . . , λK , for any xb ∈ Awith ẋ ∈ L∞(T ; Rn) and any yβ ∈ A consider

the first variations of J0 and Iγ (γ = 1, . . . ,K) with respect to xb over yβ which are given, respectively,
by

J′0(xb; yβ) := 〈ρ(t1), y(t1)〉 − 〈ρ(t0), y(t0)〉 + l′0(b)β +

∫ t1

t0
{F0x(x̃(t))y(t) + F0ẋ(x̃(t))ẏ(t)}dt,
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I′γ(xb; yβ) := l′γ(b)β +

∫ t1

t0
{Lγx(x̃(t))y(t) + Lγẋ(x̃(t))ẏ(t)}dt.

• For all (t, x, ẋ) ∈ T × Rn × Rn, denote by

Ia(t, x, ẋ) := {α ∈ R | ϕα(t, x, ẋ) = 0},

the set of active indices of (t, x, ẋ) with respect to the mixed inequality constraints.
• For all xb ∈ A, denote by

ia(xb) := {i = 1, . . . , k | Ii(xb) = 0},

the set of active indices of xb with respect to the isoperimetric inequality constraints.
• Given xb ∈ A, let Y(xb) be the set of all yβ ∈ A with ẏ ∈ L2(T ; Rn) satisfying

y(ti) = Ψ′i(b)β (i = 0, 1),
I′i (xb; yβ) ≤ 0 (i ∈ ia(xb)), I′j(xb; yβ) = 0 ( j = k + 1, . . . ,K),
ϕαx(x̃(t))y(t) + ϕαẋ(x̃(t))ẏ(t) ≤ 0 (a.e. in T, α ∈ Ia(x̃(t))),
ϕβx(x̃(t))y(t) + ϕβẋ(x̃(t))ẏ(t) = 0 (a.e. in T, β ∈ S ).

The set Y(xb) will be called the set of admissible variations along xb.
• Given (ρ, µ) ∈ X × Us, and λ1, . . . , λK , for any xb ∈ A with ẋ ∈ L∞(T ; Rn) and any yβ ∈ A with

ẏ ∈ L2(T ; Rn), we define the second variation of J0 with respect to xb over yβ, by

J′′0 (xb; yβ) := 〈l′′0 (b)β, β〉 +
∫ t1

t0
2Ω0(x; t, y(t), ẏ(t))dt,

where for all (t, y, ẏ) ∈ T × Rn × Rn,

2Ω0(x; t, y, ẏ) := 〈y, F0xx(x̃(t))y〉 + 2〈y, F0xẋ(x̃(t))ẏ〉 + 〈ẏ, F0ẋẋ(x̃(t))ẏ〉.

• Given (ρ, µ) ∈ X × Us, λ1, . . . , λK and x0b0 ∈ A, we say that x0b0 is singular, if for some τ ∈ T ,
|Hẋẋ(x̃0(τ), ρ(τ), µ(τ))| = 0. It satisfies the Legendre condition if

F0ẋẋ(x̃0(t)) = −Hẋẋ(x̃0(t), ρ(t), µ(t)) ≥ 0 (a.e. in T )

and the strengthened Legendre condition, if F0ẋẋ(x̃0(t)) > 0 (t ∈ T ).
• Denote by E0 the Weierstrass excess function of F0, given by

E0(t, x, ẋ, u) := F0(t, x, u) − F0(t, x, ẋ) − F0ẋ(t, x, ẋ)(u − ẋ).

• Similarly, the Weierstrass excess function of Lγ (γ = 1, . . . ,K), is given by

Eγ(t, x, ẋ, u) := Lγ(t, x, u) − Lγ(t, x, ẋ) − Lγẋ(t, x, ẋ)(u − ẋ).

• For all π = (π1, . . . , πn)∗ ∈ Rn, set

V(π) := (1 + |π|2)1/2 − 1.
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• For all x ∈ X, define

D(x) := V(x(t0)) +

∫ t1

t0
V(ẋ(t))dt.

• As we mentioned above the symbol ∗ denotes transpose.
It is well-known that, under certain normality assumptions (see for example [10]), if x0b0 is a strong

minimum of (P), then there exist ρ ∈ X and µ ∈ Us with µα(t) ≥ 0 and µα(t)ϕα(x̃0(t)) = 0 (α ∈
R, a.e. in T ) and multipliers λ1, . . . , λK with λi ≥ 0 and λiIi(x0b0) = 0 (i = 1, . . . , k) such that

ρ̇(t) = −H∗x(x̃0(t), ρ(t), µ(t)) and H∗ẋ(x̃0(t), ρ(t), µ(t)) = 0 (a.e. in T ).

The relations given above are the Euler-Lagrange equations of the constrained problem (P) and if
(x0, ρ, µ) satisfies the Euler-Lagrange equations, then (x0, ρ, µ) will be called an extremal.

The following theorem is the main result of the article. Given an admissible arc x0b0 with ẋ0

neither continuous nor piecewise continuous but only essentially bounded, this theorem gives
sufficient conditions assuring that x0b0 is a strong minimum of problem (P). Hypothesis (i) of
Theorem 2.1 is known as the transversality condition, hypothesis (ii) arises from the original proof of
the theorem, condition (iii) is the necessary condition of Legendre, but not its strengthened version,
hypothesis (iv) is the positivity of the second variation over the set of all nonnull admissible variations
and finally, hypothesis (v) involves three conditions related to the Weierstrass excess functions.

2.1 Theorem: Let x0b0 be an admissible arc with ẋ0 ∈ L∞(T ; Rn). Assume that Ia(x̃0(·)) is piecewise
constant on T , and there exist (ρ, µ) ∈ X ×Us with µα(t) ≥ 0 and µα(t)ϕα(x̃0(t)) = 0 (α ∈ R, a.e. in T ),
two positive numbers h, ε, and multipliers λ1, . . . , λK with λi ≥ 0 and λiIi(x0b0) = 0 (i = 1, . . . , k) such
that (x0, ρ, µ) is an extremal and the following holds:

(i) l′0(b0) + ρ∗(t1)Ψ′1(b0) − ρ∗(t0)Ψ′0(b0) = 0.

(ii) ρ∗(t1)Ψ′′1 (b0; β) − ρ∗(t0)Ψ′′0 (b0; β) ≥ 0 for all β ∈ Rp.

(iii) Hẋẋ(x̃0(t), ρ(t), µ(t)) ≤ 0 (a.e. in T ).

(iv) J′′0 (x0b0; yβ) > 0 for all nonnull yβ ∈ Y(x0b0).

(v) For all xb admissible with ‖x − x0‖C < ε,

a. E0(t, x(t), ẋ0(t), ẋ(t)) ≥ 0 (a.e. in T ).

b.
∫ t1

t0
E0(t, x(t), ẋ0(t), ẋ(t))dt ≥ h

∫ t1
t0

V(ẋ(t) − ẋ0(t))dt.

c.
∫ t1

t0
E0(t, x(t), ẋ0(t), ẋ(t))dt ≥ h|

∫ t1
t0

Eγ(t, x(t), ẋ0(t), ẋ(t))dt| (γ = 1, . . . ,K).

Then for some θ1, θ2 > 0 and all admissible trajectories xb satisfying ‖xb − x0b0‖ < θ1,

I(xb) ≥ I(x0b0) + θ2 min{|b − b0|
2,D(x − x0)}.

In particular, x0b0 is a strong minimum of (P).

3. Statement of a nonparametric problem of Bolza and a fundamental result

Suppose we are given an interval T := [t0, t1] in R, two sets B0,B1 ⊂ Rn and functions
`(x1, x2) : Rn × Rn → R, `γ(x1, x2) : Rn × Rn → R (γ = 1, . . . ,K), L(t, x, ẋ) : T × Rn × Rn → R,
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Lγ(t, x, ẋ) : T × Rn × Rn → R (γ = 1, . . . ,K) and φ(t, x, ẋ) : T × Rn × Rn → Rs. Set

R̄ := {(t, x, ẋ) ∈ T × Rn × Rn | φα(t, x, ẋ) ≤ 0 (α ∈ R), φβ(t, x, ẋ) = 0 (β ∈ S )}

where R := {1, . . . , r} and S := {r + 1, . . . , s} (r = 0, 1, . . . , s). If r = 0 then R = ∅ and we disregard
statements involving ϕα. Similarly, if r = s then S = ∅ and we disregard statements involving ϕβ.

It will be assumed throughout this section that L, Lγ (γ = 1, . . . ,K) and φ = (φ1, . . . , φs) have first
and second derivatives with respect to x and ẋ. Moreover, we shall assume that the functions `, `γ
(γ = 1, . . . ,K) are of class C2 on Rn × Rn.

Also, if we denote by c(t, x, ẋ) either L(t, x, ẋ), Lγ(t, x, ẋ) (γ = 1, . . . ,K), φ(t, x, ẋ) or any of its
partial derivatives of order less than or equal to two with respect to x and ẋ, we shall assume that all
the assumptions posed in Section 2 in the statement of the problem are satisfied.

As in Section 2, X will denote the space of absolutely continuous functions mapping T to Rn and
Us := L∞(T ; Rs) the space of essentially bounded functions mapping T to Rs.

The nonparametric calculus of variations problem we shall deal with, denoted by (P̄), consists in
minimizing the functional

J(x) := `(x(t0), x(t1)) +

∫ t1

t0
L(t, x(t), ẋ(t))dt

over all x ∈ X satisfying the constraints

c(t, x(t), ẋ(t)) is integrable on T .
x(ti) ∈ Bi for i = 0, 1.
Ji(x) := `i(x(t0), x(t1)) +

∫ t1
t0
Li(t, x(t), ẋ(t))dt ≤ 0 (i = 1, . . . , k).

J j(x) := ` j(x(t0), x(t1)) +
∫ t1

t0
L j(t, x(t), ẋ(t))dt = 0 ( j = k + 1, . . . ,K).

(t, x(t), ẋ(t)) ∈ R̄ (a.e. in T ).

Elements x in X will be called arcs or trajectories, and a trajectory x is admissible if it satisfies the
constraints.

An arc x0 solves (P̄) if it is admissible and J(x0) ≤ J(x) for all admissible arcs x. For strong
minima, an admissible arc x0 is called a strong minimum of (P̄) if it is a minimum of J relative to the
norm

‖x‖ := sup
t∈T
|x(t)|,

that is, if for some ε > 0, J(x0) ≤ J(x) for all admissible arcs satisfying ‖x − x0‖ < ε.
Let Ψ : Rn → Rn × Rn be any function of class C2 such that B0 × B1 ⊂ Ψ(Rn). Associate the

nonparametric problem (P̄) with the parametric problem of Section 2, which we denote by (PΨ), that
is, (PΨ) will be the parametric problem given in Section 2, with p = n, B = Ψ−1(B0 × B1), l = ` ◦ Ψ,
lγ = `γ ◦ Ψ (γ = 1, . . . ,K), L = L, Lγ = Lγ (γ = 1, . . . ,K), ϕ = φ and Ψ0,Ψ1 the components of Ψ,
that is, Ψ = (Ψ0,Ψ1). Recall that the notation xb means (x, b) where b ∈ Rn is a parameter.

3.1 Lemma: The following is satisfied:

(i) xb is an admissible arc of (PΨ) if and only if x is an admissible arc of (P̄) and b ∈ Ψ−1(x(t0), x(t1)).

(ii) If xb is an admissible arc of (PΨ), then

J(x) = I(xb).
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(iii) If x0b0 is a solution of (PΨ), then x0 is a solution of (P̄).
Proof: Conditions (i) and (ii) follow from the definitions of the problems. Now, let x an

admissible arc of (P̄) and let b ∈ Ψ−1(x(t0), x(t1)). By (i), x0 is an admissible arc of (P̄) and xb is an
admissible arc of (PΨ). Then by (ii),

J(x0) = I(x0b0) ≤ I(xb) = J(x)

which shows (iii).
The following corollary which is a consequence of Theorem 2.1 and Lemma 3.1, provides a set of

sufficient conditions of problem (P̄).
3.2 Corollary: Let Ψ : Rn → Rn × Rn be any function of class C2 such that B0 × B1 ⊂ Ψ(Rn) and

let (PΨ) be the parametric problem defined in the previous paragraph of Lemma 3.1. Let x0b0 be an
admissible arc of (PΨ) with ẋ0 ∈ L∞(T ; Rn). Assume that Ia(x̃0(·)) is piecewise constant on T , and
there exist (ρ, µ) ∈ X × Us with µα(t) ≥ 0 and µα(t)ϕα(x̃0(t)) = 0 (α ∈ R, a.e. in T ), two positive
numbers h, ε, and multipliers λ1, . . . , λK with λi ≥ 0 and λiIi(x0b0) = 0 (i = 1, . . . , k) such that (x0, ρ, µ)
is an extremal and the following holds:

(i) l′0(b0) + ρ∗(t1)Ψ′1(b0) − ρ∗(t0)Ψ′0(b0) = 0.

(ii) ρ∗(t1)Ψ′′1 (b0; β) − ρ∗(t0)Ψ′′0 (b0; β) ≥ 0 for all β ∈ Rn.

(iii) Hẋẋ(x̃0(t), ρ(t), µ(t)) ≤ 0 (a.e. in T ).

(iv) J′′0 (x0b0; yβ) > 0 for all nonnull yβ ∈ Y(x0b0).

(v) For all xb admissible with ‖x − x0‖ < ε,

a. E0(t, x(t), ẋ0(t), ẋ(t)) ≥ 0 (a.e. in T ).

b.
∫ t1

t0
E0(t, x(t), ẋ0(t), ẋ(t))dt ≥ h

∫ t1
t0

V(ẋ(t) − ẋ0(t))dt.

c.
∫ t1

t0
E0(t, x(t), ẋ0(t), ẋ(t))dt ≥ h|

∫ t1
t0

Eγ(t, x(t), ẋ0(t), ẋ(t))dt| (γ = 1, . . . ,K).

Then, x0 is a strong minimum of (P̄).

4. Auxiliary results

In this section we state two auxiliary results which will be used to prove Theorem 2.1. The proof of
these results will be given in Section 6. As before X denotes AC(T ; Rn).

In the following two lemmas, we shall assume that we are given x0 ∈ X and {xq} a sequence in X
such that

lim
q→∞

D(xq − x0) = 0 and dq := [2D(xq − x0)]1/2 > 0 (q ∈ N).

For all q ∈ N and t ∈ T , let

yq(t) :=
xq(t) − x0(t)

dq
.

We say that ẋq(t)→ ẋ0(t) almost uniformly on T , if for any ε > 0, there exists Uε ⊂ T measurable with
m(Uε) < ε such that ẋq(t)→ ẋ0(t) uniformly on T \ Uε .
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4.1 Lemma: For some subsequence of {xq}, again denoted by {xq}, and some y0 ∈ X with ẏ0 ∈

L2(T ; Rn), ẋq(t) → ẋ0(t) almost uniformly on T , yq(t) → y0(t) uniformly on T and {ẏq} converges
weakly in L1(T ; Rn) to ẏ0.

4.2 Lemma: Let U ⊂ T measurable, R0 ∈ L∞(U; Rn×n) and {Rq} a sequence in L∞(U; Rn×n). If
ẋq(t)→ ẋ0(t) uniformly on U, Rq(t)→ R0(t) uniformly on U and R0(t) ≥ 0 (t ∈ U), then

lim inf
q→∞

∫
U
〈Rq(t)ẏq(t), ẏq(t)〉dt ≥

∫
U
〈R0(t)ẏ0(t), ẏ0(t)〉dt.

5. Proof of Theorem 2.1

The proof of Theorem 2.1 will be divided in three Lemmas. In Lemmas 5.1, 5.2 and 5.3 below, we
shall be assuming that all the hypotheses of Theorem 2.1 are satisfied. Before enunciating the lemmas,
we shall introduce some definitions.

First of all, note that given x = (x1, . . . , xn)∗ ∈ Rn and b = (b1, . . . , bp)∗ ∈ Rp, if we define xi, bj ∈
Rn+p by xi := (x1, . . . , xn, 0, . . . , 0)∗ and bj := (0, . . . , 0, b1, . . . , bp)∗, then

xi + bj = (x1, . . . , xn, b1, . . . , bp)∗ =

(
x
b

)
∈ Rn+p.

Define F̃0 : T × Rn+p × Rn → R by

F̃0(t, ξ, ẋ) :=
l0(ξn+1, . . . , ξn+p)

t1 − t0
+ F0(t, ξ1, . . . , ξn, ẋ).

Observe that the Weierstrass excess function Ẽ0 : T × Rn+p × Rn × Rn → R of F̃0 is given by

Ẽ0(t, ξ, ẋ, u) := F̃0(t, ξ, u) − F̃0(t, ξ, ẋ) − F̃0ẋ(t, ξ, ẋ)(u − ẋ).

It is clear that for all (t, x, ẋ, u) ∈ T × Rn × Rn × Rn and all b ∈ Rp,

Ẽ0(t, xi + bj, ẋ, u) = E0(t, x, ẋ, u).

Define

J̃0(xb) := 〈ρ(t1), x(t1)〉 − 〈ρ(t0), x(t0)〉 +
∫ t1

t0
F̃0(t, x(t)i + bj, ẋ(t))dt.

We have that J0(xb) = J̃0(xb) for all xb ∈ A, and

J̃0(xb) = J̃0(x0b0) + J̃′0(x0b0; xb − x0b0) + K̃0(x0b0; xb) + Ẽ0(x0b0; xb) (1)

where

Ẽ0(x0b0; xb) :=
∫ t1

t0
Ẽ0(t, x(t)i + bj, ẋ0(t), ẋ(t))dt,

K̃0(x0b0; xb) :=
∫ t1

t0
{M̃0(t, x(t)i + bj) + 〈ẋ(t) − ẋ0(t), Ñ0(t, x(t)i + bj)〉}dt,

J̃′0(x0b0; xb − x0b0) := 〈ρ(t1), x(t1) − x0(t1)〉 − 〈ρ(t0), x(t0) − x0(t0)〉
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+

∫ t1

t0
{F̃0ξ(t, x0(t)i + b0j, ẋ0(t))([x(t) − x0(t)]i + [b − b0]j)

+F̃0ẋ(t, x0(t)i + b0j, ẋ0(t))(ẋ(t) − ẋ0(t))}dt,

and M̃0, Ñ0 are given by

M̃0(t, xi+bj) := F̃0(t, xi+bj, ẋ0(t))−F̃0(t, x0(t)i+b0j, ẋ0(t))−F̃0ξ(t, x0(t)i+b0j, ẋ0(t))([x−x0(t)]i+[b−b0]j),

Ñ0(t, xi + bj) := F̃∗0ẋ(t, xi + bj, ẋ0(t)) − F̃∗0ẋ(t, x0(t)i + b0j, ẋ0(t)).

We have,

M̃0(t, xi + bj) = 1
2〈[x − x0(t)]i + [b − b0]j, P̃0(t, xi + bj)([x − x0(t)]i + [b − b0]j)〉, (2a)

Ñ0(t, xi + bj) = Q̃0(t, xi + bj)([x − x0(t)]i + [b − b0]j), (2b)

where

P̃0(t, xi + bj) := 2
∫ 1

0
(1 − λ)F̃0ξξ(t, [x0(t) + λ(x − x0(t))]i + [b0 + λ(b − b0)]j, ẋ0(t))dλ,

Q̃0(t, xi + bj) :=
∫ 1

0
F̃0ẋξ(t, [x0(t) + λ(x − x0(t))]i + [b0 + λ(b − b0)]j, ẋ0(t))dλ.

5.1 Lemma: For some ν, κ > 0 (κ ≤ ε) and any admissible arc xb satisfying ‖xb − x0b0‖ < κ,

Ẽ0(x0b0 ; xb) ≥ h[D(x − x0) − V(x(t0) − x0(t0))],
|K̃0(x0b0; xb)| ≤ ν‖xb − x0b0‖[1 + D(x − x0)].

Proof: By condition (v)(b) of Theorem 2.1, given xb admissible with ‖xb − x0b0‖ < ε,

Ẽ0(x0b0; xb) =

∫ t1

t0
Ẽ0(t, x(t)i + bj, ẋ0(t), ẋ(t))dt =

∫ t1

t0
E0(t, x(t), ẋ0(t), ẋ(t))dt

≥ h
∫ t1

t0
V(ẋ(t) − ẋ0(t))dt = h[D(x − x0) − V(x(t0) − x0(t0))].

On the other hand, by (2) and using [t, b] in order to denote (t, x(t)i+bj), observe that for some constants
c0, c1 > 0, for all xb admissible with ‖xb − x0b0‖ < 1 and almost all t ∈ T ,

|M̃0[t, b] + 〈ẋ(t) − ẋ0(t), Ñ0[t, b]〉|
= | 12〈[x(t) − x0(t)]i + [b − b0]j, P̃0[t, b]([x(t) − x0(t)]i + [b − b0]j) + 2Q̃∗0[t, b](ẋ(t) − ẋ0(t))〉|
≤ 1

2 |[x(t) − x0(t)]i + [b − b0]j| · [|P̃0[t, b]||[x(t) − x0(t)]i + [b − b0]j| + 2|Q̃∗0[t, b]||ẋ(t) − ẋ0(t)|]
≤ c0|[x(t) − x0(t)]i + [b − b0]j| · [|[x(t) − x0(t)]i + [b − b0]j| + |ẋ(t) − ẋ0(t)|]
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≤ c0|[x(t) − x0(t)]i + [b − b0]j| · [|x(t) − x0(t)| + |b − b0| + |ẋ(t) − ẋ0(t)|]
≤ c0|[x(t) − x0(t)]i + [b − b0]j| · [‖xb − x0b0‖ + |ẋ(t) − ẋ0(t)|]
≤ c0|[x(t) − x0(t)]i + [b − b0]j| · [1 + |ẋ(t) − ẋ0(t)|]
≤ c1|[x(t) − x0(t)]i + [b − b0]j| · [1 + |ẋ(t) − ẋ0(t)|2]1/2.

Setting ν := max{c1, c1(t1 − t0)}, for all xb admissible with ‖xb − x0b0‖ < 1,

|K̃0(x0b0; xb)| ≤ c1‖xb − x0b0‖

∫ t1

t0
[1 + V(ẋ(t) − ẋ0(t))]dt

≤ ν‖xb − x0b0‖[1 + D(x − x0) − V(x(t0) − x0(t0))]
≤ ν‖xb − x0b0‖[1 + D(x − x0)]

and so the conclusion of the lemma is obtained with κ = min{ε, 1}.
5.2 Lemma: If conclusion of Theorem 2.1 is false, then there exists a subsequence {xq

bq
} of admissible

arcs such that

lim
q→∞

D(xq − x0) = 0 and dq := [2D(xq − x0)]1/2 > 0 (q ∈ N).

Proof: If conclusion of Theorem 2.1 is false, then for all θ1, θ2 > 0, there exists an admissible arc
xb such that

‖xb − x0b0‖ < θ1 and I(xb) < I(x0b0) + θ2 min{|b − b0|
2,D(x − x0)}. (3)

Since
µα(t) ≥ 0 (α ∈ R, a.e. in T ) and λi ≥ 0 (i = 1, . . . , k),

if xb is admissible, then I(xb) ≥ J0(xb). Also, since

µα(t)ϕα(x̃0(t)) = 0 (α ∈ R, a.e. in T ) and λiIi(x0b0) = 0 (i = 1, . . . , k),

then I(x0b0) = J0(x0b0). Therefore (3) implies that, for all θ1, θ2 > 0, there exists xb admissible with

‖xb − x0b0‖ < θ1 and J0(xb) < J0(x0b0) + θ2 min{|b − b0|
2,D(x − x0)}.

Let κ and ν be the positive numbers given in Lemma 5.1. Thus, if conclusion of Theorem 2.1 is false,
then for all q ∈ N, there exists xq

bq
admissible such that

‖xq
bq
− x0b0‖ < min{κ, 1/q}, J0(xq

bq
) − J0(x0b0) < min

{
|bq − b0|

2

q
,

D(xq − x0)
q

}
. (4)

Clearly, D(xq − x0) = 0 if and only if xq = x0. Then, by the second relation of (4),

D(xq − x0) = 0 =⇒ bq , b0.
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Suppose D(xq − x0) = 0 for infinitely many q’s. For i = 0, 1, we have

0 = xq(ti) − x0(ti) = Ψi(bq) − Ψi(b0) =

∫ 1

0
Ψ′i(b0 + λ[bq − b0])(bq − b0)dλ, (5)

0 = Ψi(bq) − Ψi(b0) = Ψ′i(b0)(bq − b0) +

∫ 1

0
(1 − λ)Ψ′′i (b0 + λ[bq − b0]; bq − b0)dλ. (6)

Denoting by (bq, b0) the line segment in Rp joining the points bq and b0, by the second relation of (4),
by condition (i) of Theorem 2.1, by (6), and the mean value theorem, there exists Ξq ∈ (bq, b0) such
that

0 > J0(x0bq) − J0(x0b0)
= l0(bq) − l0(b0)
= l′0(b0)(bq − b0) + 1

2〈l
′′
0 (Ξq)(bq − b0), bq − b0〉

= ρ∗(t0)Ψ′0(b0)(bq − b0) − ρ∗(t1)Ψ′1(b0)(bq − b0) + 1
2〈l
′′
0 (Ξq)(bq − b0), bq − b0〉

=

1∑
i=0

(−1)i+1
∫ 1

0
(1 − λ)ρ∗(ti)Ψ′′i (b0 + λ[bq − b0]; bq − b0)dλ + 1

2〈l
′′
0 (Ξq)(bq − b0), bq − b0〉. (7)

Choose an appropriate subsequence of {(bq − b0)/|bq − b0|} (without relabeling), such that

lim
q→∞

bq − b0

|bq − b0|
= β0 (8)

for some β0 ∈ Rp with |β0| = 1. By (5),

Ψ′i(b0)β0 = 0 (i = 0, 1). (9)

For all (t, ξ, ẋ) ∈ T × Rn+p × Rn and γ = 1, . . . ,K, if we set

L̃γ(t, ξ, ẋ) :=
lγ(ξn+1, . . . , ξn+p)

t1 − t0
+ Lγ(t, ξ1, . . . , ξn, ẋ),

and for all (t, ξ, ẋ, u) ∈ T × Rn+p × Rn × Rn and γ = 1, . . . ,K, if we set

Ẽγ(t, ξ, ẋ, u) := L̃γ(t, ξ, u) − L̃γ(t, ξ, ẋ) − L̃γẋ(t, ξ, ẋ)(u − ẋ),

we have that for all xb ∈ A and γ = 1, . . . ,K,

Ĩγ(xb) = Ĩγ(x0b0) + Ĩ′γ(x0b0; xb − x0b0) + K̃γ(x0b0; xb) + Ẽγ(x0b0; xb)

where

Ẽγ(x0b0; xb) :=
∫ t1

t0
Ẽγ(t, x(t)i + bj, ẋ0(t), ẋ(t))dt,

K̃γ(x0b0; xb) :=
∫ t1

t0
{M̃γ(t, x(t)i + bj) + 〈ẋ(t) − ẋ0(t), Ñγ(t, x(t)i + bj)〉}dt,

AIMS Mathematics Volume 5, Issue 1, 111–139.



123

Ĩ′γ(x0b0; xb − x0b0) :=
∫ t1

t0
{L̃γξ(t, x0(t)i + b0j, ẋ0(t))([x(t) − x0(t)]i + [b − b0]j)

+L̃γẋ(t, x0(t)i + b0j, ẋ0(t))(ẋ(t) − ẋ0(t))}dt,

Ĩγ(xb) :=
∫ t1

t0
L̃γ(t, x(t)i + bj, ẋ(t))dt,

and M̃γ, Ñγ are given by

M̃γ(t, xi+bj) := L̃γ(t, xi+bj, ẋ0(t))−L̃γ(t, x0(t)i+b0j, ẋ0(t))−L̃γξ(t, x0(t)i+b0j, ẋ0(t))([x−x0(t)]i+[b−b0]j),

Ñγ(t, xi + bj) := L̃∗γẋ(t, xi + bj, ẋ0(t)) − L̃∗γẋ(t, x0(t)i + b0j, ẋ0(t)).

We have

M̃γ(t, xi + bj) = 1
2〈[x − x0(t)]i + [b − b0]j, P̃γ(t, xi + bj)([x − x0(t)]i + [b − b0]j)〉,

Ñγ(t, xi + bj) = Q̃γ(t, xi + bj)([x − x0(t)]i + [b − b0]j),

where

P̃γ(t, xi + bj) := 2
∫ 1

0
(1 − λ)L̃γξξ(t, [x0(t) + λ(x − x0(t))]i + [b0 + λ(b − b0)]j, ẋ0(t))dλ,

Q̃γ(t, xi + bj) :=
∫ 1

0
L̃γẋξ(t, [x0(t) + λ(x − x0(t))]i + [b0 + λ(b − b0)]j, ẋ0(t))dλ.

Since x0bq and x0b0 are admissible, for all i ∈ ia(x0b0), we have

0 ≥ Ii(x0bq)
= Ii(x0bq) − Ii(x0b0)
= Ĩi(x0bq) − Ĩi(x0b0)

= Ĩ′i (x0b0; x0bq − x0b0) + K̃i(x0b0; x0bq) + Ẽi(x0b0; x0bq)
= I′i (x0b0; x0bq − x0b0) + K̃i(x0b0; x0bq)
= l′i(b0)(bq − b0) + K̃i(x0b0; x0bq).

As one readily verifies, for all γ = 1, . . . ,K,

lim
q→∞

K̃γ(x0b0; x0bq)

|bq − b0|
= 0.

Then, for i ∈ ia(x0b0),
0 ≥ l′i(b0)β0 = I′i (x0b0; 0β0). (10)

On the other hand, once again since x0bq and x0b0 are admissible, for all j = k + 1, . . . ,K, we have

0 = I j(x0bq) − I j(x0b0)
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= Ĩ j(x0bq) − Ĩ j(x0b0)

= Ĩ′j(x0b0; x0bq − x0b0) + K̃ j(x0b0; x0bq) + Ẽ j(x0b0; x0bq)
= I′j(x0b0; x0bq − x0b0) + K̃ j(x0b0; x0bq)
= l′j(b0)(bq − b0) + K̃ j(x0b0; x0bq).

Then, for j = k + 1, . . . ,K,
0 = l′j(b0)β0 = I′j(x0b0; 0β0). (11)

Consequently, by (9), (10) and (11), 0β0 ∈ Y(x0b0).
By (7), (8) and condition (ii) of Theorem 2.1, it follows that

0 ≥ 1
2 [ρ∗(t1)Ψ′′1 (b0; β0) − ρ∗(t0)Ψ′′0 (b0; β0) + 〈l′′0 (b0)β0, β0〉]

≥ 1
2〈l
′′
0 (b0)β0, β0〉

= 1
2 J′′0 (x0b0; 0β0)

which contradicts (iv) of Theorem 2.1. Therefore, we may assume that for all q ∈ N,

dq = [2D(xq − x0)]1/2 > 0.

Since (x0, ρ, µ) is an extremal, for all q ∈ N,

J̃′0(x0b0; xq
bq
− x0b0) = 〈ρ(t1), xq(t1) − x0(t1)〉 − 〈ρ(t0), xq(t0) − x0(t0)〉 + l′0(b0)(bq − b0)

and thus
lim
q→∞

J̃′0(x0b0; xq
bq
− x0b0) = 0. (12)

By (1), the first relation of (4) and Lemma 5.1, for all q ∈ N,

J̃0(xq
bq

) − J̃0(x0b0) = J̃′0(x0b0; xq
bq
− x0b0) + K̃0(x0b0; xq

bq
) + Ẽ0(x0b0; xq

bq
)

≥ J̃′0(x0b0; xq
bq
− x0b0) − ν‖x

q
bq
− x0b0‖

+D(xq − x0)(h − ν‖xq
bq
− x0b0‖) − hV(xq(t0) − x0(t0)),

then, by (4), for all q ∈ N,

D(xq − x0)
(
h −

ν

q
−

1
q

)
<
ν

q
+ hV(xq(t0) − x0(t0)) − J̃′0(x0b0; xq

bq
− x0b0).

By (12),
lim
q→∞

D(xq − x0) = 0.

5.3 Lemma: If conclusion of Theorem 2.1 is false, then condition (iv) of Theorem 2.1 is false.
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Proof: Let {xq
bq
} be the sequence of admissible arcs given in Lemma 5.2. Then,

lim
q→∞

D(xq − x0) = 0 and dq = [2D(xq − x0)]1/2 > 0 (q ∈ N).

Case (1): Suppose first that the sequence {(bq − b0)/dq} is bounded in Rp.
For all q ∈ N and t ∈ T , define

yq(t) :=
xq(t) − x0(t)

dq
and ωq(t) := yq(t)i +

bq − b0

dq
j.

By Lemma 4.1, for some y0 ∈ X with ẏ0 ∈ L2(T ; Rn) and a subsequence of {xq}, again denoted by {xq},
{ẏq} converges weakly in L1(T ; Rn) to ẏ0. Once again, by Lemma 4.1,

lim
q→∞

yq(t) = y0(t) uniformly on T . (13)

Since the sequence {(bq−b0)/dq} is bounded in Rp, then we may assume that there exists some β0 ∈ Rp

such that

lim
q→∞

bq − b0

dq
= β0. (14)

First, we are going to show that for i = 0, 1,

y0(ti) = Ψ′i(b0)β0. (15)

Note first that for i = 0, 1 and all q ∈ N, we have that

yq(ti) =

∫ 1

0
Ψ′i(b0 + λ[bq − b0])

(bq − b0)
dq

dλ. (16)

By (13), (14) and (16), we obtain (15). Now, we claim that

J′′0 (x0b0; y0β0
) ≤ 0 and y0β0

. (0, 0). (17)

To prove it, observe that by (2), (13) and (14),

lim
q→∞

M̃0(t, xq(t)i + bqj)
d2

q
= lim

q→∞
1
2〈ωq(t), P̃0(t, xq(t)i + bqj)ωq(t)〉

= 1
2〈y0(t)i + β0j, F̃0ξξ(t, x0(t)i + b0j, ẋ0(t))[y0(t)i + β0j]〉,

lim
q→∞

Ñ0(t, xq(t)i + bqj)
dq

= lim
q→∞

Q̃0(t, xq(t)i + bqj)ωq(t) = F̃0ẋξ(t, x0(t)i + b0j, ẋ0(t))[y0(t)i + β0j]

both uniformly on T . With this in mind and since {ẏq} converges weakly in L1(T ; Rn) to ẏ0, we have

lim
q→∞

K̃0(x0b0; xq
bq

)

d2
q

=
1
2

∫ t1

t0
{〈y0(t)i + β0j, F̃0ξξ(t, x0(t)i + b0j, ẋ0(t))[y0(t)i + β0j]〉
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+2〈ẏ0(t), F̃0ẋξ(t, x0(t)i + b0j, ẋ0(t))[y0(t)i + β0j]〉}dt. (18)

Since (x0, ρ, µ) is an extremal and by condition (i) of Theorem 2.1, it follows that

lim
q→∞

J̃′0(x0b0; xq
bq
− x0b0)

d2
q

= lim
q→∞

1
d2

q
[〈ρ(t1), xq(t1) − x0(t1)〉 − 〈ρ(t0), xq(t0) − x0(t0)〉 + l′0(b0)(bq − b0)]

= lim
q→∞

1
d2

q
[ρ∗(t1)(Ψ1(bq) − Ψ1(b0) − Ψ′1(b0)(bq − b0))

−ρ∗(t0)(Ψ0(bq) − Ψ0(b0) − Ψ′0(b0)(bq − b0))]

= lim
q→∞

1
d2

q

∫ 1

0

1∑
i=0

(−1)i+1(1 − λ)ρ∗(ti)Ψ′′i (b0 + λ[bq − b0]; bq − b0)dλ

= 1
2 [ρ∗(t1)Ψ′′1 (b0; β0) − ρ∗(t0)Ψ′′0 (b0; β0)]. (19)

Consequently, by (1), (4), (19), and condition (ii) of Theorem 2.1,

0 ≥ lim
q→∞

K̃0(x0b0; xq
bq

)

d2
q

+ lim inf
q→∞

Ẽ0(x0b0; xq
bq

)

d2
q

. (20)

Now, let us show that

lim inf
q→∞

Ẽ0(x0b0; xq
bq

)

d2
q

≥
1
2

∫ t1

t0
〈ẏ0(t), F̃0ẋẋ(t, x0(t)i + b0j, ẋ0(t))ẏ0(t)〉dt. (21)

To this end, let U a measurable subset of T such that ẋq(t) → ẋ0(t) uniformly on U. For all q ∈ N and
t ∈ U, we have that

1
d2

q
Ẽ0(t, xq(t)i + bqj, ẋ0(t), ẋq(t)) = 1

2〈ẏq(t),Rq(t)ẏq(t)〉,

where

Rq(t) := 2
∫ 1

0
(1 − λ)F̃0ẋẋ(t, xq(t)i + bqj, ẋ0(t) + λ[ẋq(t) − ẋ0(t)])dλ.

Clearly,
lim
q→∞

Rq(t) = R0(t) := F̃0ẋẋ(t, x0(t)i + b0j, ẋ0(t)) uniformly on U.

By condition (iii) of Theorem 2.1, we have

F̃0ẋẋ(t, x0(t)i + b0j, ẋ0(t)) = R0(t) ≥ 0 (t ∈ U).

With this in mind, and since by (v)(a) of Theorem 2.1 for all q ∈ N,

E0(t, xq(t), ẋ0(t), ẋq(t)) ≥ 0 (a.e. in T ),
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by Lemma 4.2,

lim inf
q→∞

Ẽ0(x0b0; xq
bq

)

d2
q

= lim inf
q→∞

1
d2

q

∫ t1

t0
Ẽ0(t, xq(t)i + bqj, ẋ0(t), ẋq(t))dt

= lim inf
q→∞

1
d2

q

∫ t1

t0
E0(t, xq(t), ẋ0(t), ẋq(t))dt

≥ lim inf
q→∞

1
d2

q

∫
U

E0(t, xq(t), ẋ0(t), ẋq(t))dt

= lim inf
q→∞

1
d2

q

∫
U

Ẽ0(t, xq(t)i + bqj, ẋ0(t), ẋq(t))dt

=
1
2

lim inf
q→∞

∫
U
〈ẏq(t),Rq(t)ẏq(t)〉dt ≥

1
2

∫
U
〈ẏ0(t),R0(t)ẏ0(t)〉dt.

As U can be chosen to differ from T by a set of an arbitrarily small measure and the function

t 7→ 〈ẏ0(t),R0(t)ẏ0(t)〉

belongs to L1(T ; R), this inequality holds when U = T , and this establishes (21). With this in mind, by
(18) and (20), we have

0 ≥

∫ t1

t0
{〈ẏ0(t), F̃0ẋẋ(t, x0(t)i + b0j, ẋ0(t))ẏ0(t)〉 + 2〈ẏ0(t), F̃0ẋξ(t, x0(t)i + b0j, ẋ0(t))[y0(t)i + β0j]〉

+〈y0(t)i + β0j, F̃0ξξ(t, x0(t)i + b0j, ẋ0(t))[y0(t)i + β0j]〉}dt

= 〈l′′0 (b0)β0, β0〉

+

∫ t1

t0
{〈ẏ0(t), F0ẋẋ(x̃0(t))ẏ0(t)〉 + 2〈ẏ0(t), F0ẋx(x̃0(t))y0(t)〉 + 〈y0(t), F0xx(x̃0(t))y0(t)〉}dt

= 〈l′′0 (b0)β0, β0〉 +

∫ t1

t0
2Ω0(x0; t, y0(t), ẏ0(t))dt = J′′0 (x0b0; y0β0

).

Now, let us show that y0β0
. (0, 0). By (20), the first conclusion of Lemma 5.1, the fact that V(π) ≤

|π|2/2 for all π ∈ Rn,

0 ≥ lim
q→∞

K̃0(x0b0; xq
bq

)

d2
q

+
h
2
−

h
2

lim sup
q→∞

|xq(t0) − x0(t0)|2

d2
q

= lim
q→∞

K̃0(x0b0; xq
bq

)

d2
q

+
h
2
−

h
2

lim sup
q→∞

|Ψ0(bq) − Ψ0(b0)|2

d2
q

= lim
q→∞

K̃0(x0b0; xq
bq

)

d2
q

+
h
2
−

h
2

lim sup
q→∞

∣∣∣∣∣∫ 1

0
Ψ′0(b0 + λ[bq − b0])

(bq − b0

dq

)
dλ

∣∣∣∣∣2
= lim

q→∞

K̃0(x0b0; xq
bq

)

d2
q

+
h
2
−

h
2
|Ψ′0(b0)β0|

2
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= lim
q→∞

K̃0(x0b0; xq
bq

)

d2
q

+
h
2
−

h
2
|y0(t0)|2.

With this in mind and (18), the fact that y0β0
≡ (0, 0) contradicts the positivity of h and this establishes

(17).

Let us now show that
I′i (x0b0; y0β0

) ≤ 0 (i ∈ ia(x0b0)). (22)

To this end, note that, for all γ = 0, 1, . . . ,K,

lim
q→∞

M̃γ(t, xq(t)i + bqj)
dq

= lim
q→∞

1
2〈[xq(t) − x0(t)]i + [bq − b0]j, P̃γ(t, xq(t)i + bqj)ωq(t)〉 = 0,

lim
q→∞

Ñγ(t, xq(t)i + bqj) = lim
q→∞

Q̃γ(t, xq(t)i + bqj)([xq(t) − x0(t)]i + [bq − b0]j) = 0,

all uniformly on T and {ẏq} converges weakly in L1(T ; Rn) to ẏ0, then for all γ = 0, 1, . . . ,K,

lim
q→∞

K̃γ(x0b0; xq
bq

)

dq
= 0. (23)

As in (19), we have

lim
q→∞

J̃′0(x0b0; xq
bq
− x0b0)

dq

= lim
q→∞

1
dq

1∑
i=0

(−1)i+1
∫ 1

0
(1 − λ)ρ∗(ti)Ψ′′i (b0 + λ[bq − b0]; bq − b0)dλ

= 0. (24)

By (4), (23) and (24),

0 ≥ lim sup
q→∞

J̃0(xq
bq

) − J̃0(x0b0)

dq
= lim sup

q→∞

Ẽ0(x0b0; xq
bq

)

dq
.

Since Ẽ0(x0b0; xq
bq

) ≥ 0 (q ∈ N), then

lim
q→∞

Ẽ0(x0b0; xq
bq

)

dq
= 0.

Therefore, by condition (v)(c) of Theorem 2.1, for all γ = 1, . . . ,K,

lim
q→∞

Ẽγ(x0b0; xq
bq

)

dq
= 0. (25)
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As for all q ∈ N and i ∈ ia(x0b0),

0 ≥ Ii(xq
bq

)

= Ii(xq
bq

) − Ii(x0b0)

= Ĩi(xq
bq

) − Ĩi(x0b0)

= Ĩ′i (x0b0; xq
bq
− x0b0) + K̃i(x0b0; xq

bq
) + Ẽi(x0b0; xq

bq
)

= I′i (x0b0; xq
bq
− x0b0) + K̃i(x0b0; xq

bq
) + Ẽi(x0b0; xq

bq
),

then, by (23) and (25), for all i ∈ ia(x0b0),

0 ≥ lim
q→∞

I′i (x0b0; xq
bq
− x0b0)

dq
.

Therefore, since yq(t) → y0(t) uniformly on T , {ẏq} converges weakly in L1(T ; Rn) to ẏ0 and (bq −

b0)/dq → β0, then for all i ∈ ia(x0b0),

0 ≥ lim
q→∞

I′i (x0b0; xq
bq
− x0b0)

dq
= I′i (x0b0; y0β0

)

which establishes (22).
Now, let us show that

I′j(x0b0; y0β0
) = 0 ( j = k + 1, . . . ,K). (26)

Indeed, as for all q ∈ N and j = k + 1, . . . ,K,

0 = I j(xq
bq

) − I j(x0b0)

= Ĩ j(xq
bq

) − Ĩ j(x0b0)

= Ĩ′j(x0b0 ; xq
bq
− x0b0) + K̃ j(x0b0; xq

bq
) + Ẽ j(x0b0; xq

bq
)

= I′j(x0b0; xq
bq
− x0b0) + K̃ j(x0b0; xq

bq
) + Ẽ j(x0b0; xq

bq
),

by (23) and (25), for all j = k + 1, . . . ,K,

0 = lim
q→∞

I′j(x0b0; xq
bq
− x0b0)

dq
= I′j(x0b0; y0β0

)

which is precisely (26).
We claim that, for all α ∈ Ia(x̃0(t)),

ϕαx(x̃0(t))y0(t) + ϕαẋ(x̃0(t))ẏ0(t) ≤ 0 (a.e. in T ). (27)

Indeed, for all α ∈ R, q ∈ N, almost all t ∈ T and λ ∈ [0, 1], define

Gα
q (t; λ) := ϕα(t, x0(t) + λ[xq(t) − x0(t)], ẋ0(t) + λ[ẋq(t) − ẋ0(t)]),
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Wα
q (t) := [−ϕα(x̃q(t))]1/2,

Zα
0 (t) := −ϕαx(x̃0(t))y0(t) − ϕαẋ(x̃0(t))ẏ0(t),

where as usual (x̃q(t)) := (t, xq(t), ẋq(t)) (a.e. in T ). Given t ∈ [t0, t1) a point of continuity of Ia(x̃0(·))
and α ∈ Ia(x̃0(t)), since Ia(x̃0(·)) is piecewise constant on T , there exists an interval [t, t̄] ⊂ T with
t < t̄ such that ϕα(x̃0(τ)) = 0 for all τ ∈ [t, t̄]. Using the notation

[τ] := (τ, x0(τ) + λ[xq(τ) − x0(τ)], ẋ0(τ) + λ[ẋq(τ) − ẋ0(τ)]),

we have

0 ≤ lim
q→∞

∫
[t,t̄]∩U

(Wα
q (τ))2

dq
dτ = lim

q→∞

1
dq

∫
[t,t̄]∩U

{−ϕα(x̃q(τ)) + ϕα(x̃0(τ))}dτ

= − lim
q→∞

1
dq

∫
[t,t̄]∩U

{Gα
q (τ; 1) −Gα

q (τ; 0)}dτ = − lim
q→∞

1
dq

∫
[t,t̄]∩U

∫ 1

0

∂

∂λ
Gα

q (τ; λ)dλdτ

= − lim
q→∞

1
dq

∫
[t,t̄]∩U

∫ 1

0
{ϕαx[τ](xq(τ) − x0(τ)) + ϕαẋ[τ](ẋq(τ) − ẋ0(τ))}dλdτ

= − lim
q→∞

∫
[t,t̄]∩U

∫ 1

0
{ϕαx[τ]yq(τ) + ϕαẋ[τ]ẏq(τ)}dλdτ

=

∫
[t,t̄]∩U

{−ϕαx(x̃0(τ))y0(τ) − ϕαẋ(x̃0(τ))ẏ0(τ)}dτ =

∫
[t,t̄]∩U

Zα
0 (τ)dτ.

Since U can be chosen to differ from T by a set of an arbitrarily small measure, then

0 ≤
∫ t̄

t
Zα

0 (τ)dτ.

If Zα
0 (τ) < 0 on a measurable set Θ such that Θ ⊂ [t, t̄] and m(Θ) > 0, then

0 >
∫

Θ∩U
Zα

0 (τ)dτ = lim
q→∞

∫
Θ∩U

(Wα
q (τ))2

dq
dτ ≥ 0

which is a contradiction. Therefore, Zα
0 (τ) ≥ 0 a.e. in [t, t̄] with t ∈ [t0, t1) an arbitrary point of

continuity of Ia(x̃0(·)) and, therefore, Zα
0 (t) ≥ 0 for almost all t ∈ T which shows (27).

Now, let us show that for all β ∈ S ,

ϕβx(x̃0(t))y0(t) + ϕβẋ(x̃0(t))ẏ0(t) = 0 (a.e. in T ). (28)

Indeed, for all β ∈ S , q ∈ N, almost all t ∈ T and λ ∈ [0, 1], define

Hβ
q (t; λ) := ϕβ(t, x0(t) + λ[xq(t) − x0(t)], ẋ0(t) + λ[ẋq(t) − ẋ0(t)]).

For all β ∈ S , q ∈ N and almost all t ∈ T , we have

0 = Hβ
q (t; 1) −Hβ

q (t; 0) =

∫ 1

0

∂

∂λ
Hβ

q (t; λ)dλ
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=

∫ 1

0
{ϕβx[t](xq(t) − x0(t)) + ϕβẋ[t](ẋq(t) − ẋ0(t))}dλ.

Therefore, for all β ∈ S , q ∈ N and almost all t ∈ T ,

0 =

∫ 1

0
{ϕβx[t]yq(t) + ϕβẋ[t]ẏq(t)}dλ. (29)

By (29), for all t ∈ T and β ∈ S ,

0 =

∫
[t0,t]∩U

{ϕβx(x̃0(τ))y0(τ) + ϕβẋ(x̃0(τ))ẏ0(τ)}dτ.

Since, as before, U can be chosen to differ from T by a set of an arbitrarily small measure, then for all
t ∈ T and β ∈ S ,

0 =

∫ t

t0
{ϕβx(x̃0(τ))y0(τ) + ϕβẋ(x̃0(τ))ẏ0(τ)}dτ

and so (28) is verified. Consequently, from (15), (22), (26), (27) and (28), y0β0
∈ Y(x0b0). This fact

together with (17) contradicts condition (iv) of Theorem 2.1.
Case (2): Now, suppose that the sequence {(bq − b0)/dq} is not bounded. Then,

lim
q→∞

∣∣∣∣∣bq − b0

dq

∣∣∣∣∣ = +∞. (30)

Choose an appropriate subsequence of {(bq − b0)/|bq − b0|} (without relabeling), and β̄0 ∈ Rp with
|β̄0| = 1, such that

lim
q→∞

bq − b0

|bq − b0|
= β̄0. (31)

For all q ∈ N and t ∈ T , define

ω̄q(t) :=
xq(t) − x0(t)
|bq − b0|

i +
bq − b0

|bq − b0|
j.

By Lemma 4.1 and (30),

lim
q→∞

xq(t) − x0(t)
|bq − b0|

= lim
q→∞

yq(t) ·
dq

|bq − b0|
= y0(t) · 0 = 0 uniformly on T . (32)

For i = 0, 1 and all q ∈ N, we have

xq(ti) − x0(ti)
|bq − b0|

=

∫ 1

0
Ψ′i(b0 + λ[bq − b0])

( bq − b0

|bq − b0|

)
dλ. (33)

By (31), (32) and (33), for i = 0, 1,
Ψ′i(b0)β̄0 = 0. (34)
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Now, by (2), (31) and (32),

lim
q→∞

M̃0(t, xq(t)i + bqj)
|bq − b0|

2 = lim
q→∞

1
2〈ω̄q(t), P̃0(t, xq(t)i + bqj)ω̄q(t)〉

= 1
2〈0β̄0 , F̃0ξξ(t, x0(t)i + b0j, ẋ0(t))0β̄0〉

=
〈β̄0, l′′0 (b0)β̄0〉

2(t1 − t0)
,

lim
q→∞

Ñ0(t, xq(t)i + bqj)
|bq − b0|

= lim
q→∞

Q̃0(t, xq(t)i + bqj)ω̄q(t)

= F̃0ẋξ(t, x0(t)i + b0j, ẋ0(t))0β̄0

= 0

both uniformly on T . Together with Lemma 4.1, this implies that

lim
q→∞

K̃0(x0b0; xq
bq

)

|bq − b0|
2 = 1

2〈β̄0, l′′0 (b0)β̄0〉 + lim
q→∞

∫ t1

t0

〈 dq

|bq − b0|
· ẏq(t),

Ñ0(t, xq(t)i + bqj)
|bq − b0|

〉
dt

= 1
2〈β̄0, l′′0 (b0)β̄0〉. (35)

As in (19), we have

lim
q→∞

J̃′0(x0b0; xq
bq
− x0b0)

|bq − b0|
2 = 1

2 [ρ∗(t1)Ψ′′1 (b0; β̄0) − ρ∗(t0)Ψ′′0 (b0; β̄0)]. (36)

Even more, by (1), (4), (36), and condition (ii) of Theorem 2.1,

0 ≥ lim
q→∞

K̃0(x0b0; xq
bq

)

|bq − b0|
2 + lim inf

q→∞

Ẽ0(x0b0; xq
bq

)

|bq − b0|
2 . (37)

Consequently, since Ẽ0(x0b0; xq
bq

) ≥ 0 (q ∈ N), by (35) and (37),

0 ≥ 1
2〈β̄0, l′′0 (b0)β̄0〉 = 1

2 J′′0 (x0b0; 0β̄0). (38)

Let us now show that for all i ∈ ia(x0b0),

I′i (x0b0 ; 0β̄0) ≤ 0. (39)

To prove it, note that since

lim
q→∞

xq(t) − x0(t)
|bq − b0|

= 0 uniformly on T ,
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and {ẏq} converges weakly in L1(T ; Rn) to ẏ0, for all γ = 0, 1, . . . ,K,

lim
q→∞

K̃γ(x0b0; xq
bq

)

|bq − b0|
= 0. (40)

As in (24),

lim
q→∞

J̃′0(x0b0; xq
bq
− x0b0)

|bq − b0|
= 0. (41)

Then, by (4), (40) and (41),

0 ≥ lim sup
q→∞

J̃0(xq
bq

) − J̃0(x0b0)

|bq − b0|
= lim sup

q→∞

Ẽ0(x0b0; xq
bq

)

|bq − b0|
≥ 0.

Thus, by condition (v)(c) of Theorem 2.1, for all γ = 1, . . . ,K,

lim
q→∞

Ẽγ(x0b0; xq
bq

)

|bq − b0|
= 0. (42)

As for all q ∈ N and i ∈ ia(x0b0),

0 ≥ Ii(xq
bq

)

= Ii(xq
bq

) − Ii(x0b0)

= Ĩi(xq
bq

) − Ĩi(x0b0)

= Ĩ′i (x0b0; xq
bq
− x0b0) + K̃i(x0b0; xq

bq
) + Ẽi(x0b0; xq

bq
)

= I′i (x0b0; xq
bq
− x0b0) + K̃i(x0b0; xq

bq
) + Ẽi(x0b0; xq

bq
),

then, by (40) and (42), for all i ∈ ia(x0b0),

0 ≥ lim
q→∞

I′i (x0b0; xq
bq
− x0b0)

|bq − b0|
.

Hence, since

{ẏq} converges weakly to ẏ0 in L1(T ; Rn),
dq

|bq − b0|
→ 0,

lim
q→∞

xq(t) − x0(t)
|bq − b0|

= 0 uniformly on T , and
bq − b0

|bq − b0|
→ β̄0,

for all i ∈ ia(x0b0),

0 ≥ lim
q→∞

I′i (x0b0; xq
bq
− x0b0)

|bq − b0|
= l′i(b0)β̄0 = I′i (x0b0; 0β̄0)

which establishes (39). Finally, let us show that for all j = k + 1, . . . ,K,

I′j(x0b0; 0β̄0) = 0. (43)
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Indeed, as for all q ∈ N and j = k + 1, . . . ,K,

0 = I j(xq
bq

) − I j(x0b0)

= Ĩ j(xq
bq

) − Ĩ j(x0b0)

= Ĩ′j(x0b0; xq
bq
− x0b0) + K̃ j(x0b0; xq

bq
) + Ẽ j(x0b0; xq

bq
)

= I′j(x0b0; xq
bq
− x0b0) + K̃ j(x0b0; xq

bq
) + Ẽ j(x0b0; xq

bq
),

then, by (40) and (42), for all j = k + 1, . . . ,K,

0 = lim
q→∞

I′j(x0b0; xq
bq
− x0b0)

|bq − b0|
= I′j(x0b0; 0β̄0)

which is precisely (43). Consequently, (34), (38), (39) and (43) contradicts condition (iv) of Theorem
2.1 and this completes the proof of Theorem 2.1.

6. Proof of Lemmas 4.1 and 4.2

Proof of Lemma 4.1: For all q ∈ N and almost all t ∈ T , define

cq := [1 + 1
2V(xq(t0) − x0(t0))]1/2 and Wq(t) := [1 + 1

2V(ẋq(t) − ẋ0(t))]1/2.

For all q ∈ N, note that

|yq(t0)|2

c2
q

+

∫ t1

t0

|ẏq(t)|2

W2
q (t)

dt

=
|xq(t0) − x0(t0)|2

d2
q[1 + 1

2V(xq(t0) − x0(t0))]
+

1
d2

q

∫ t1

t0

|ẋq(t) − ẋ0(t)|2

1 + 1
2V(ẋq(t) − ẋ0(t))

dt

=
|xq(t0) − x0(t0)|2

D(xq − x0)[2 + V(xq(t0) − x0(t0))]
+

1
D(xq − x0)

∫ t1

t0

|ẋq(t) − ẋ0(t)|2

2 + V(ẋq(t) − ẋ0(t))
dt

=
1

D(xq − x0)

(
V(xq(t0) − x0(t0)) +

∫ t1

t0
V(ẋq(t) − ẋ0(t))dt

)
=

D(xq − x0)
D(xq − x0)

= 1.

Clearly limq→∞ cq = 1. Then, there exist some subsequence of {xq}, again denoted by {xq}, some
ȳ0 ∈ Rn and some σ0 ∈ L2(T ; Rn) such that

lim
q→∞

yq(t0)
cq

= lim
q→∞

yq(t0) = ȳ0,

{ẏq/Wq} converges weakly in L2(T ; Rn) to σ0.
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As W2
q (t) ≥ Wq(t) ≥ 1 for all q ∈ N and for almost all t ∈ T , we have

0 ≤
∫ t1

t0
[Wq(t) − 1]dt ≤

∫ t1

t0
[W2

q (t) − 1]dt =
1
2

∫ t1

t0
V(ẋq(t) − ẋ0(t))dt ≤ D(xq − x0).

Thus, it follows that

lim
q→∞

∫ t1

t0
[Wq(t) − 1]dt = lim

q→∞

∫ t1

t0
[W2

q (t) − 1]dt = 0.

Note also that ∫ t1

t0
[Wq(t) − 1]2dt =

∫ t1

t0
[W2

q (t) − 1]dt − 2
∫ t1

t0
[Wq(t) − 1]dt.

Then for any h ∈ L∞(T ; Rn),
lim
q→∞
‖hWq − h‖2 = 0

and so

lim
q→∞

∫ t1

t0
〈h(t), ẏq(t)〉dt = lim

q→∞

∫ t1

t0

〈
h(t)Wq(t),

ẏq(t)
Wq(t)

〉
dt =

∫ t1

t0
〈h(t), σ0(t)〉dt.

Therefore, {ẏq} converges weakly in L1(T ; Rn) to σ0. Hence, {ẏq} is equi-integrable on T and therefore
the sequence {yq} is equi-continuous on T . Thus, if y0(t) := ȳ0 +

∫ t

t0
σ0(τ)dτ, then, y0 ∈ X with

ẏ0 ∈ L2(T ; Rn) and

lim
q→∞

yq(t) = lim
q→∞

yq(t0) + lim
q→∞

∫ t

t0
ẏq(τ)dτ = y0(t) uniformly on T ,

{ẏq} converges weakly in L1(T ; Rn) to ẏ0 = σ0.

Now, let us show that ẋq(t)→ ẋ0(t) almost uniformly on T . For almost all t ∈ T , define

W(t) := [1 + 1
2V(ẋ(t))]1/2.

Observe that ∫ t1

t0

|ẋ(t)|2

2W2(t)
dt =

∫ t1

t0

|ẋ(t)|2

2 + V(ẋ(t))
dt =

∫ t1

t0
V(ẋ(t))dt ≤ D(x),∫ t1

t0
2W2(t)dt = 2t1 − 2t0 +

∫ t1

t0
V(ẋ(t))dt ≤ 2t1 − 2t0 + D(x).

From these relations, we have

‖ẋ‖21 ≤
∫ t1

t0

|ẋ(t)|2

2W2(t)
dt

∫ t1

t0
2W2(t)dt ≤ D(x)[2t1 − 2t0 + D(x)].

Consequently, ‖ẋq − ẋ0‖1 → 0 and so some subsequence of {ẋq} converges almost uniformly to ẋ0 on
T .

Proof of Lemma 4.2: Recall the definition of Wq given in the proof of Lemma 4.1. As Wq(t) → 1
uniformly on U, then for all h ∈ L2(U; Rn),

lim
q→∞

∫
U
〈ẏq(t), h(t)〉dt = lim

q→∞

∫
U

〈 ẏq(t)
Wq(t)

,Wq(t)h(t)
〉
dt =

∫
U
〈ẏ0(t), h(t)〉dt,
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that is, {ẏq} converges weakly in L2(U; Rn) to ẏ0. As R0(t) ≥ 0 (t ∈ U), the function

ẏ 7→
∫

U
〈R0(t)ẏ(t), ẏ(t)〉dt

is convex in L2(U; Rn) and since this function is strongly continuous on L2(U; Rn), then this function
is weakly lower semicontinuous in L2(U; Rn). Thus,

lim inf
q→∞

∫
U
〈R0(t)ẏq(t), ẏq(t)〉dt ≥

∫
U
〈R0(t)ẏ0(t), ẏ0(t)〉dt.

Since Rq(t)→ R0(t) uniformly on U, it follows that

lim inf
q→∞

∫
U
〈Rq(t)ẏq(t), ẏq(t)〉dt ≥

∫
U
〈R0(t)ẏ0(t), ẏ0(t)〉dt.

7. Example

In this section, we show with an example how our sufficiency theory is able to detect optimality even
when the proposed extremal to be a strong minimum is singular and its derivative is only essentially
bounded. It is worthwhile observing that the initial and final end-points of the states of admissible
trajectories are not restricted to belong to any manifold described by any smooth function, in contrast,
these boundary points must only lie in the set of real numbers, that is, these boundary points are
completely free.

In Example 7.1 since no isoperimetric constraints occur l0, L0, F0, E0 and J′′0 correspond simply to
l, L, F, E and J′′ respectively.

7.1 Example: Let x0 : [0, 1]→ R be any absolutely continuous function with ẋ0 ∈ L∞([0, 1]; R) and
x0(0) = x0(1) = 0. Consider the nonparametric problem (P̄) of minimizing

J(x) := x2(0) − x(1) +

∫ 1

0
{exp(t(ẋ(t) − ẋ0(t))) + x(t)}dt

over all arcs x ∈ X satisfying the constraints
c(t, x(t), ẋ(t)) is integrable on [0, 1].
x(0) ∈ R, x(1) ∈ R.
(t, x(t), ẋ(t)) ∈ R̄ (a.e. in [0, 1])

where
R̄ := {(t, x, ẋ) ∈ [0, 1] × R × R | φ1(t, x, ẋ) ≤ 0},

φ1(t, x, ẋ) := (ẋ − ẋ0(t))2 − exp(t(ẋ − ẋ0(t))) + t(ẋ − ẋ0(t)) + 1,

X := AC([0, 1]; R) and c(t, x, ẋ) denotes either

L(t, x, ẋ) := exp(t(ẋ − ẋ0(t))) + x,

φ1(t, x, ẋ), or any of its partial derivatives of order less than or equal to two with respect to x and ẋ.
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For this problem we shall consider the data of the nonparametric problem given in Section 3 which
are given by T = [0, 1], n = 1, r = 1, s = 1, k = K = 0, B0 = R, B1 = R, `(x1, x2) = x2

1 − x2,
L(t, x, ẋ) = exp(t(ẋ − ẋ0(t))) + x, φ1(t, x, ẋ) = (ẋ − ẋ0(t))2 − exp(t(ẋ − ẋ0(t))) + t(ẋ − ẋ0(t)) + 1.

Clearly, all the assumptions posed in the statement of the problem are easily verified.
Also, it is evident that the trajectory x0 is admissible of (P̄). Let Ψ : R → R × R be defined by

Ψ(b) := (b, b). Clearly, Ψ is C2 in R and B0 × B1 ⊂ Ψ(R). The associated parametric problem of
Section 2 denoted by (PΨ) has the following data, p = 1, B = Ψ−1(B0 × B1) = R, l = ` ◦ Ψ, L = L,
ϕ = ϕ1 = φ1 and Ψ0, Ψ1 the components of Ψ, that is, Ψ0(b) = b, Ψ1(b) = b (b ∈ R). Recall that the
notation xb means (x, b) where b ∈ R is a parameter.

Observe that if we set b0 := 0, then x0b0 is admissible of (PΨ). Also, clearly Ia(x̃0(·)) is constant
on T . Let (ρ(t), µ1(t)) := (t, 0) (t ∈ T ) and note that (ρ, µ) ∈ X × U1, µ1(t) ≥ 0, µ1(t)ϕ1(x̃0(t)) = 0
(a.e. in T ).

Now, observe that the Hamiltonian H is given by

H(t, x, ẋ, ρ(t), µ(t)) = tẋ − exp(t(ẋ − ẋ0(t))) − x.

Also, note that

Hx(x̃0(t), ρ(t), µ(t)) = −1, Hẋ(x̃0(t), ρ(t), µ(t)) = 0 (a.e. in T ),

and so (x0, ρ, µ) satisfies the Euler-Lagrange equations which are given by

ρ̇(t) = −Hx(x̃0(t), ρ(t), µ(t)), Hẋ(x̃0(t), ρ(t), µ(t)) = 0 (a.e. in T ).

Thus, (x0, ρ, µ) is an extremal. As Ψ0(b) = b, Ψ1(b) = b, l(b) = b2 − b (b ∈ R), then

l′(b0) + ρ(1)Ψ′1(b0) − ρ(0)Ψ′0(b0) = 0

and so condition (i) of Corollary 3.2 is satisfied. Also, as one readily verifies,

ρ(1)Ψ′′1 (b0; β) − ρ(0)Ψ′′0 (b0; β) = 0 for all β ∈ R

and so condition (ii) of Corollary 3.2 is fulfilled.
Additionally, as

Hẋẋ(x̃0(t), ρ(t), µ(t)) = −t2 (a.e. in T ),

it follows that (iii) of Corollary 3.2 is satisfied and (x0, ρ, µ) is singular since

Hẋẋ(x̃0(0), ρ(0), µ(0)) = 0.

As ϕ1x(x̃0(t)) = ϕ1ẋ(x̃0(t)) = 0 (a.e. in T ), then Y(x0b0) is given by all yβ ∈ X × R with ẏ ∈ L2(T ; R)
satisfying y(0) = β, y(1) = β. We have,

J′′(x0b0; yβ) = 2β2 +

∫ 1

0
t2ẏ2(t)dt > 0

for all yβ ∈ Y(x0b0), yβ , (0, 0), and hence (iv) of Corollary 3.2 is satisfied. Now, observe that for all
(t, x, ẋ) ∈ T × R × R,

F(t, x, ẋ) = −H(t, x, ẋ, ρ(t), µ(t)) − ρ̇(t)x = −tẋ + exp(t(ẋ − ẋ0(t))).
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Hence for almost all t ∈ T , if xb is admissible,

E(t, x(t), ẋ0(t), ẋ(t)) = F(t, x(t), ẋ(t)) − F(t, x(t), ẋ0(t)) − F ẋ(t, x(t), ẋ0(t))(ẋ(t) − ẋ0(t))
= −tẋ(t) + exp(t(ẋ(t) − ẋ0(t))) + tẋ0(t) − 1
= exp(t(ẋ(t) − ẋ0(t))) − t(ẋ(t) − ẋ0(t)) − 1 ≥ 0

which implies that (v)(a) of Corollary 3.2 is verified with any ε > 0. Finally, for all xb admissible, we
have ∫ 1

0
E(t, x(t), ẋ0(t), ẋ(t))dt =

∫ 1

0
{exp(t(ẋ(t) − ẋ0(t))) − t(ẋ(t) − ẋ0(t)) − 1}dt

≥

∫ 1

0
(ẋ(t) − ẋ0(t))2dt ≥ 2

∫ 1

0
V(ẋ(t) − ẋ0(t))dt.

Therefore, (v)(b) of Corollary 3.2 is satisfied with any ε > 0 and h = 2. Since k = K = 0, it is evident
that (v)(c) of Corollary 3.2 is also verified with any ε > 0 and h = 2. By Corollary 3.2, x0 is a strong
minimum of (P̄).
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