AIMS Mathematics, 2019, 4(5): 1416-1429. doi: 10.3934/math.2019.5.1416.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Numerical investigation of fractional-order unsteady natural convective radiating flow of nanofluid in a vertical channel

1 School of Mathematical Sciences, Peking University, Beijing 100871, China;
2 BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China;
3 State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, Peking University, Beijing 100871, China;
4 Institute of Ocean Research, Peking University, Beijing 100871, China;
5 Department of Electrical Engineering, Bahria University, Islamabad Campus, Islamabad 44000, Pakistan

In the current article, we analyzed the unsteady natural convection with the help of fractional approach. Firstly, the unsteady natural convection radiating flow in an open ended vertical channel beside the magnetic effects. We assumed the channel is stationary with non-uniform temperature. Secondly, we utilized a fractional calculus approach for the constitutive relationship of a fluid model. The modeled problem is transformed into nondimensional form via viable non-dimensional variables. In order to investigate the numerical solutions of non-dimensional system of partial differential equations finite difference approach coupled with Crank Nicolson method is developed and successfully applied. The beauty of Crank Nicolson finite difference scheme is, this scheme is unconditionally stable. A very careful survey of literate witnesses that this scheme has never been reported in the literary for fluid problems. The physical changes are discussed with the help of graphics. The expression for both velocity field and temperature distribution has been made via said scheme. A comprehensive discussion about the influence of various related dimensionless parameters upon the flow properties disclosed our work. It is observed that velocity field decreases as enhancing the magnetic field effects. Heat transfer enhanced as enhancing the nanoparticle volume fraction parameter. Velocity field and heat transfer shows the dominant behavior for the case of Cu-based nanofluid as compare to Al2O3 based nanofluid. Comparative study also included to show the accuracy of the proposed finite difference scheme. It is to be highlighted that the proposed scheme is very efficient and well-matched to investigate the solutions of modeled problem and can be extended to diversify problems of physical nature.
  Article Metrics

Keywords finite difference method; fractional calculus; nanofluid; magnetic effects; thermal radiation

Citation: M. Hamid, T. Zubair, M. Usman, R. U. Haq. Numerical investigation of fractional-order unsteady natural convective radiating flow of nanofluid in a vertical channel. AIMS Mathematics, 2019, 4(5): 1416-1429. doi: 10.3934/math.2019.5.1416


  • 1. T. Fujii, M. Takeuchi, M. Fujii, et al. Experiments on natural-convection heat transfer from the outer surface of a vertical cylinder to liquids, Int. J Heat Mass Tran., 13 (1970), 753-787.    
  • 2. T. Fujii, H. Imura, Natural-convection heat transfers from a plate with arbitrary inclination, Int. J Heat Mass Tran., 15 (1972), 755-767.    
  • 3. M. A. Ezzat, Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer, Physica B, 405 (2010), 4188-4194.    
  • 4. M. Arshad, M. H. Inayat, I. R. Chughtai, Experimental study of natural convection heat transfer from an enclosed assembly of thin vertical cylinders, Appl. Therm. Eng., 31 (2011), 20-27.    
  • 5. N. T. M. Eldabe, S. N. Sallam, M. Y. Abou-zeid, Numerical study of viscous dissipation effect on free convection heat and mass transfer of MHD non-Newtonian fluid flow through a porous medium, Journal of the Egyptian mathematical society, 20 (2012), 139-151.    
  • 6. Q. Rubbab, D. Vieru, C. Fetecau, et al. Natural convection flow near a vertical plate that applies a shear stress to a viscous fluid, PloS one, 8 (2013), e78352.
  • 7. R. Ellahi, The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions, Appl. Math. Model., 37 (2013): 1451-1467.
  • 8. M. M. Molla, A. Biswas, A. Al-Mamun, et al. Natural convection flow along an isothermal vertical flat plate with temperature dependent viscosity and heat generation, Journal of computational engineering, 2014 (2014), 1-13.
  • 9. M. A. Ezzat, A. A. El-Bary, A. S. Hatem, State space approach to unsteady magnetohydrodynamics natural convection heat and mass transfer through a porous medium saturated with a viscoelastic fluid, J. Appl. Mech. Tech. Phy., 55 (2014), 660-671.    
  • 10. S. R. Sheri, T. Thumma, Numerical study of heat transfer enhancement in MHD free convection flow over vertical plate utilizing nanofluids, Ain Shams Eng. J., 9 (2016), 1169-1180.
  • 11. S. Z. Alamri, A. A. Khan, M. Azeez, et al. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo-Christov heat flux model, Phys. Lett. A, 383 (2019), 276-281.    
  • 12. F. Ali, M. Saqib, I. Khan, et al. Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters'-B fluid model, Eur. Phys. J. Plus, 131 (2016), 377.
  • 13. M. Hamid, T. Zubair, M. Usman, et al. Natural convection effects on heat and mass transfer of slip flow of time-dependent Prandtl fluid, Journal of Computational Design and Engineering, 2019.
  • 14. M. A. Yousif, H. F. Ismael, T. Abbas, et al. Numerical study of momentum and heat transfer of MHD Carreau nanofluid over an exponentially stretched plate with internal heat source/sink and radiation, Heat Transf. Res., 50 (2019), 649-658.
  • 15. M. Hamid, M. Usman, R. U. Haq, Wavelets investigation of Soret and Dufour effects on stagnation point fluid flow in two-dimension with variable thermal conductivity and diffusivity, Phys. Scripta, 2019.
  • 16. S. U. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress & Exposition, 1995.
  • 17. S. U. S Choi, Z. G. Zhang, W. Yu, et al. Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79 (2001), 2252-2254.    
  • 18. S. Dinarvand, R. Hosseini, M. Abulhasansari, et al. Buongiorno's model for double-diffusive mixed convective stagnation-point flow of a nanofluid considering diffusiophoresis effect of binary base fluid, Adv. Powder Technol., 26 (2015), 1423-1434.    
  • 19. M. Sheikholeslami, R. Ellahi, Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid, Int. J. Heat Mass Tran., 89 (2015), 799-808.    
  • 20. M. Sheikholeslami, D. D. Ganji, Nanofluid convective heat transfer using semi analytical and numerical approaches: a review, J. Taiwan Inst. Chem. E., 65 (2016), 43-77.    
  • 21. M. Usman, M. Hamid, U. Khan, et al. Differential transform method for unsteady nanofluid flow and heat transfer, Alex. Eng. J., 57 (2018), 1867-1875.    
  • 22. M. Hassan, R. Ellahi, M. M. Bhatti, et al. A comparative study on magnetic and non-magnetic particles in nanofluid propagating over a wedge. Can. J. Phys., 97 (2019), 277-285.
  • 23. S. T. Mohyud-Din, M. Usman, K. Afaq, et al. Examination of carbon-water nanofluid flow with thermal radiation under the effect of Marangoni convection, Eng. Computations, 34 (2017), 2330-2343.    
  • 24. M. Hamid, M. Usman, Z. H. Khan, et al. Numerical study of unsteady MHD flow of Williamson nanofluid in a permeable channel with heat source/sink and thermal radiation, Eur. Phys. J. Plus, 133 (2018), 527.
  • 25. N. A. Sheikh, F. Ali, M. Saqib, et al. Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results Phys., 7 (2017), 789-800.    
  • 26. M. A. Ezzat, A. A. El-Bary, MHD free convection flow with fractional heat conduction law, Magnetohydrodynamics, 48 (2012).
  • 27. F. Ali, N. A. Sheikh, I. Khan, et al. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model, J. Magn. Magn. Mater., 423 (2017), 327-336.    
  • 28. M. A. Imran, I. Khan, M. Ahmad, et al. Heat and mass transport of differential type fluid with non-integer order time-fractional Caputo derivatives, J. Mol. Liq., 229 (2017), 67-75.    
  • 29. M. Hamid, M. Usman, R. U. Haq, et al. Wavelets Analysis of Stagnation Point Flow of non-Newtonian Nanofluid, Appl. Math. Mech.-Engl., 40 (2019), 1211-1226.    
  • 30. I. Podlubny, Fractional differential equations, Academic press, San Diego, 1999.
  • 31. V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics. J. Fluids Eng.-T. Asme, 124 (2002), 803-806.
  • 32. J. A. T. Machado, M. F. Silva, R. S. Barbosa, et al. Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010), 1-34.
  • 33. T. Pfitzenreiter, A physical basis for fractional derivatives in constitutive equations, ZAMM‐Zeitschrift für angewandte mathematik und mechanic, 84 (2004), 284-287.    
  • 34. Y. Kawada, H. Nagahama, H. Hara, Irreversible thermodynamic and viscoelastic model for power-law relaxation and attenuation of rocks, Tectonophysics, 427 (2006), 255-263.    
  • 35. M. Usman, M. Hamid, T. Zubair, et al. Operational-matrix-based algorithm for differential equations of fractional order with Dirichlet boundary conditions, Eur. Phys. J. Plus, 134 (2019), 279.
  • 36. M. Hamid, M. Usman, T. Zubair, et al. An efficient analysis for N-soliton, Lump and lump-kink solutions of time-fractional (2+1)-Kadomtsev-Petviashvili equation, Physica A, 528 (2019), 121320.
  • 37. N. A. Shah, D. Vieru, C. Fetecau, Effects of the fractional order and magnetic field on the blood flow in cylindrical domains, J. Magn. Magn. Mater., 409 (2016), 10-19.    
  • 38. M. A. Ezzat, I. A. Abbas, A. A. El-Bary, et al. Numerical study of the Stokes' first problem for thermoelectric micropolar fluid with fractional derivative heat transfer, Magnetohydrodynamics, 50 (2014).
  • 39. I. Khan, N. A. Shah, Y. Mahsud, et al. Heat transfer analysis in a Maxwell fluid over an oscillating vertical plate using fractional Caputo-Fabrizio derivatives, Eur. Phys. J. Plus, 132 (2017), 194.
  • 40. B. Ahmad, S. I. Shah, S. U. Haq, et al. Analysis of unsteady natural convective radiating gas flow in a vertical channel by employing the Caputo time-fractional derivative, Eur. Phys. J. Plus, 132 (2017), 380.
  • 41. H. Sun, W. Chen, C. Li, et al. Finite difference schemes for variable-order time fractional diffusion equation, Int. J. Bifurcat. Chaos, 22 (2012), 1250085.
  • 42. C. Çelik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231 (2012), 1743-1750.    
  • 43. A. C. Cogley, W. G. Vincenti and S. E. Gilles, Differential Approximation for Radiative Transfer in a Non-Grey Gas near Equilibrium, AIAA J., 6 (1968), 551-553.    


This article has been cited by

  • 1. Khalil Ur Rehman, Qasem M. Al-Mdallal, Iskander Tlili, M.Y. Malik, Impact of heated triangular ribs on hydrodynamic forces in a rectangular domain with heated elliptic cylinder: Finite element analysis, International Communications in Heat and Mass Transfer, 2020, 112, 104501, 10.1016/j.icheatmasstransfer.2020.104501
  • 2. Ambreen Sarwar, Tao Gang, Muhammad Arshad, Iftikhar Ahmed, Construction of bright-dark solitary waves and elliptic function solutions of space-time fractional partial differential equations and their applications, Physica Scripta, 2020, 95, 4, 045227, 10.1088/1402-4896/ab6d46
  • 3. Zafar H. Khan, Waqar A. Khan, R.U. Haq, M. Usman, M. Hamid, Effects of volume fraction on water-based carbon nanotubes flow in a right-angle trapezoidal cavity: FEM based analysis, International Communications in Heat and Mass Transfer, 2020, 116, 104640, 10.1016/j.icheatmasstransfer.2020.104640
  • 4. Manjappa Archana, Mundalamane Manjappa Praveena, Kondlahalli Ganesh Kumar, Sabir Ali Shehzad, Manzoor Ahmad, Unsteady squeezed Casson nanofluid flow by considering the slip condition and time‐dependent magnetic field, Heat Transfer, 2020, 10.1002/htj.21859
  • 5. Mostafa Abbaszadeh, Mehdi Dehghan, A POD-based reduced-order Crank-Nicolson/fourth-order alternating direction implicit (ADI) finite difference scheme for solving the two-dimensional distributed-order Riesz space-fractional diffusion equation, Applied Numerical Mathematics, 2020, 10.1016/j.apnum.2020.07.020
  • 6. Kharabela Swain, Basavarajappa Mahanthesh, Fateh Mebarek‐Oudina, Heat transport and stagnation‐point flow of magnetized nanoliquid with variable thermal conductivity, Brownian moment, and thermophoresis aspects, Heat Transfer, 2020, 10.1002/htj.21902
  • 7. Sundar Sindhu, Bijjanal Jayanna Gireesha, Effect of nanoparticle shapes on irreversibility analysis of nanofluid in a microchannel with individual effects of radiative heat flux, velocity slip and convective heating, Heat Transfer, 2020, 10.1002/htj.21909
  • 8. Rahila Naz, Featuring the radiative transmission of energy in viscoelastic nanofluid with swimming microorganisms, International Communications in Heat and Mass Transfer, 2020, 117, 104788, 10.1016/j.icheatmasstransfer.2020.104788
  • 9. Sameh E Ahmed, Anas A M Arafa, Impacts of the fractional derivatives on unsteady magnetohydrodynamics radiative Casson nanofluid flow combined with Joule heating, Physica Scripta, 2020, 95, 9, 095206, 10.1088/1402-4896/abab37
  • 10. Iftikhar Ahmad, Samaira Aziz, Nasir Ali, Sami Ullah Khan, Radiative unsteady hydromagnetic 3D flow model for Jeffrey nanofluid configured by an accelerated surface with chemical reaction, Heat Transfer, 2020, 10.1002/htj.21912
  • 11. Umair Ali, Muhammad Sohail, Farah Aini Abdullah, An Efficient Numerical Scheme for Variable-Order Fractional Sub-Diffusion Equation, Symmetry, 2020, 12, 9, 1437, 10.3390/sym12091437
  • 12. Muhammad Imran Asjad, Muhammadish Danish Ikram, Ali Akgül, Analysis of MHD viscous fluid flow through porous medium with novel power law fractional differential operator, Physica Scripta, 2020, 95, 11, 115209, 10.1088/1402-4896/abbe4f

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved