
AIMS Mathematics, 2019, 4(4): 11811202. doi: 10.3934/math.2019.4.1181.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Framework for treating nonLinear multiterm fractional differential equations with reasonable spectrum of twopoint boundary conditions
Department of Mathematics, University of Karachi, Karachi 75270, Pakistan
Received: , Accepted: , Published:
Special Issues: Initial and Boundary Value Problems for Differential Equations
Keywords: residual method; bat algorithm; particle swarm optimization; differential evolution; fractional differential equation
Citation: Najeeb Alam Khan, Samreen Ahmad. Framework for treating nonLinear multiterm fractional differential equations with reasonable spectrum of twopoint boundary conditions. AIMS Mathematics, 2019, 4(4): 11811202. doi: 10.3934/math.2019.4.1181
References:
 1. A. B. Salati, M. Shamsi and D. F. M. Torres, Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems, Commun. Nonlinear Sci., 67 (2019), 334350.
 2. V. Gallican and R. Brenner, Homogenization estimates for the effective response of fractional viscoelastic particulate composites, Continuum Mech. Therm., 31 (2018), 823840.
 3. R. Ghaffari and F. Ghoreishi, Reduced spline method based on a proper orthogonal decomposition technique for fractional subdiffusion equations, Appl. Numer. Math., 137 (2019), 6279.
 4. M. Alquran, K. AlKhaled, S. Sivasundaram, et al. Mathematical and numerical study of existence of bifurcations of the generalized fractional BurgersHuxley equation, Nonlinear Stud., 24 (2017), 235244.
 5. Y. Povstenko and T. Kyrylych, Timefractional heat conduction in a plane with two external halfinfinite line slits under heat flux loading, Symmetry, 11 (2019), 689.
 6. R. L. Bagley and J. Torvik, Fractional calculusa different approach to the analysis of viscoelastically damped structures, AIAA J., 21 (1983), 741748.
 7. P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294298.
 8. O. A. Arqub and M. AlSmadi, AtanganaBaleanu fractional approach to the solutions of BagleyTorvik and Painlevé equations in Hilbert space, Chaos, Solitons Fractals, 117 (2018), 161167.
 9. M. Esmaeilbeigi, M. Paripour and G. Garmanjani, Approximate solution of the fuzzy fractional BagleyTorvik equation by the RBF collocation method, Comput. Meth. Differ. Eq., 6 (2018), 186–214.
 10. M. Uddin and S. Ahmad, On the numerical solution of BagleyTorvik equation via the Laplace transform. Tbilisi Math. J., 10 (2017), 279284.
 11. M. G. Sakar, O. Saldır and A. Akgül, A novel technique for fractional BagleyTorvik equation, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 2018, 17.
 12. J. I. Fister, X. S.Yang, I. Fister, et al. A brief review of natureinspired algorithms for optimization, 2013, arXiv preprint arXiv:1307.4186.
 13. P. Sindhuja, P. Ramamoorthy and M. S. Kumar, A brief survey on nature Inspired algorithms: Clever algorithms for optimization, Asian J. Comput. Sci. Tech., 7 (2018), 2732.
 14. J. C. Bansal, P. K. Singh and N. R. Pal, Evolutionary and Swarm Intelligence Algorithms, Springer, 2019.
 15. N. A. Khan, T. Hameed, O. A. Razzaq, et al. Intelligent computing for duffingharmonic oscillator equation via the bioevolutionary optimization algorithm, J. Low Freq. Noise V. A., 2018, 1461348418819408.
 16. M. Mareli and B. Twala, An adaptive cuckoo search algorithm for optimisation, Appl. Comput. inf., 14 (2018), 107115.
 17. M. Nouiri, A. Bekrar, A. Jemai, et al. An effective and distributed particle swarm optimization algorithm for flexible jobshop scheduling problem, J. Intell. Manuf., 29 (2018), 603615.
 18. I. Rahman, P. M. Vasant, B. S. M. Singh, et al. On the performance of accelerated particle swarm optimization for charging plugin hybrid electric vehicles, Alex. Eng. J., 55 (2016), 419426.
 19. M. Dorigo and T. Stützle, Ant colony optimization: Overview and recent advances, In: Handbook of Metaheuristics, Springer, 2019, 311351.
 20. Z. Cui, F. Li and W. Zhang, Bat algorithm with principal component analysis, Int. J. Mach. Learn. Cyb., 10 (2019), 603622.
 21. T. Jayabarathi, T. Raghunathan and A. Gandomi, The bat algorithm, variants and some practical engineering applications: A review, In: NatureInspired Algorithms and Applied Optimization, Springer, 2018, 313330.
 22. M. Rahmani, A. Ghanbari and M. M. Ettefagh, A novel adaptive neural network integral slidingmode control of a biped robot using bat algorithm, J. Vib. Control, 24 (2018), 20452060.
 23. S. Chatterjee, S. Sarkar, N. Dey, et al. Hybrid nondominated sorting genetic algorithm: IIneural network approach, In: Advancements in Applied Metaheuristic Computing, IGI Global, 2018, 264286.
 24. A. Ara, N. A.Khan, F. Naz, et al. Numerical simulation for JefferyHamel flow and heat transfer of micropolar fluid based on differential evolution algorithm, AIP Adv., 8 (2018), 015201.
 25. A. Ara, N. A. Khan, O. A. Razzaq, et al. Wavelets optimization method for evaluation of fractional partial differential equations: an application to financial modelling, Adv. Differ. Eq., 2018 (2018), 8.
 26. Z. A. A. Alyasseri, A. T. Khader, M. A. AlBetar, et al. Variants of the flower pollination algorithm: A review, In: NatureInspired Algorithms and Applied Optimization, Springer, 2018, 91118.
 27. I. A. Carvalho, D. G. da Rocha, J. G. R. Silva, et al. Study of parameter sensitivity on bat algorithm, In: International Conference on Computational Science and Its Applications, Springer, 2017, 494508.
 28. O. A. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5 (2013), 3152.
 29. A. ElAjou, O. Arqub, Z. Zhour, et al. New results on fractional power series: Theories and applications, Entropy, 15 (2013), 53055323.
 30. M. Ali, I. Jaradat and M. Alquran, New computational method for solving fractional riccati equation, J. Math. Comput. Sci., 17 (2017), 106114.
 31. M. Alquran, H. Jaradat and M. I. Syam, Analytical solution of the timefractional Phi4 equation by using modified residual power series method, Nonlinear Dynam., 90 (2017), 25252529.
 32. J. Zhang, Z. Wei, L Yong, et al. Analytical solution for the time fractional BBMBurger equation by using modified residual power series method, Complexity, 2018 (2018), 2891373.
 33. M. Alquran and I. Jaradat, A novel scheme for solving Caputo timefractional nonlinear equations: Theory and application, Nonlinear Dynam., 91 (2018), 23892395.
 34. I. Jaradat, M. AlDolat, K. AlZoubi, et al. Theory and applications of a more general form for fractional power series expansion, Chaos, Solitons Fractals, 108 (2018), 107110.
 35. N. A. Khan, O. A. Razzaq, T. Hameed, et al., Numerical scheme for global optimization of fractional optimal control problem with boundary conditions, In. J. Innov. Comput. Inform. Control, 13 (2017), 16691679.
 36. R. Bharathi and M. Tech, Study of comparison between bat algorithm, particle swarm optimization (PSO), grey wolf optimization (GWO) for user's bank loan and their related due history, In. J. Sci. Res. Comput. Sci., Eng. Inform. Tech., 3 (2018), 24563307.
 37. X. Meng, X. Gao and Y. Liu, A novel hybrid bat algorithm with differential evolution strategy for constrained optimization. In. J. Hybrid Inform. Tech., 8 (2015), 383396.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *