Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Influence of the topology on the dynamics of a complex network of HIV/AIDS epidemic models

1 Laboratoire de Mathématiques Appliquées du Havre, Normandie Université, FR CNRS 3335, ISCN, 76600 Le Havre, France
2 Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Topical Section: Mathematical modeling

In this paper, we propose an original complex network model for an epidemic problem in an heterogeneous geographical area. The complex network is constructed by coupling nonidentical instances of a HIV/AIDS epidemiological model for which a disease-free equilibrium and an endemic equilibrium can coexist. After proving the existence of a positively invariant region for the solutions of the complex network problem, we investigate the effect of the coupling on the dynamics of the network, and establish the existence of a unique disease-free equilibrium for the whole network, which is globally asymptotically stable. We prove the existence of an optimal topology that minimizes the level of infected individuals, and apply the theoretical results to the case of the Cape Verde archipelago.
  Article Metrics


1.A. Arenas, A. Díaz-Guilera, J. Kurths, et al.Synchronization in complex networks, Physics Reports, 469 (2008), 93-153.    

2.M. A. Aziz-Alaoui, Synchronization of Chaos, Encyclopedia of Mathematical Physics, 5 (2006), 213-226.

3.I. Belykh, M. Hasler, M. Lauret, et al.Synchronization and graph topology, Int. J. Bifurcat. Chaos, 15 (2005), 3423-3433.    

4.G. Cantin, M. Aziz-Alaoui, N. Verdière, et al.Control of panic behavior in a non identical network coupled with a geographical model,PhysCon, 2017,

5.G. Cantin, Non identical coupled networks with a geographical model for human behaviors during catastrophic events,Int. J. Bifurcat. Chaos,27 (2017), 1750213.

6.J. Cao, P. Li, W. Wang,Global synchronization in arrays of delayed neural networks with constant and delayed coupling,Phys. Lett. A,353 (2006), 318-325.    

7.G. Chen, J. Zhou, Z. Liu,Global synchronization of coupled delayed neural networks and applications to chaotic CNN models,Int. J. Bifurcat. Chaos,14 (2004), 2229-2240.    

8.P. van den Driessche, J. Watmough,Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,Math. Biosci.,180 (2002), 29-48.    

9.J. Epperlein, S. Siegmund,Phase-locked trajectories for dynamical systems on graphs,Discrete Cont. Dyn-B,18 (2013), 1827-1844.    

10.M. Golubitsky, I. Stewart,Nonlinear dynamics of networks: the groupoid formalism,B. Am. Math. Soc.,43 (2006), 305-364.    

11.H. W. Hethcote, The mathematics of infectious diseases,SIAM Rev.,42 (2000), 599-653.    

12.R. A. Horn, C. R. Johnson, Matrix analysis,Cambridge University Press, 2012.

13.M. J. Keeling, K. T. Eames,Networks and epidemic models,J. R. Soc. Interface,2 (2005), 295-307.    

14.A. S. Khanna, D. T. Dimitrov, S. M. Goodreau,What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?,Math. Biosci. Eng.,11 (2014), 1065-1090.    

15.R. A. Kimbir, M. J. Udoo, T. Aboiyar,A mathematical model for the transmission dynamics of HIV/AIDS in a two-sex population considering counseling and antiretroviral therapy (ART),Journal of Mathematical and Computational Science,2 (2012), 1671-1684.

16.J. LaSalle, Some extensions of Liapunov's second method,IRE Transactions on circuit theory,7 (1960), 520-527.    

17.V. Lakshmikantham, S. Leela, A. Martynyuk, Stability analysis of nonlinear systems,Springer, 1989.

18.M. Lässig, U. Bastolla, S. C. Manrubia, et al.Shape of ecological networks,Phys. Rev. Lett.,86 (2001), 4418.

19.M. Y. Li, Z. Shuai,Global-stability problem for coupled systems of differential equations on networks,J. Differ. Equations,248 (2010), 1-20.    

20.R. M. May, A. L. Lloyd,Infection dynamics on scale-free networks,Phys. Rev. E,64 (2001), 066112.

21.Y. Moreno, R. Pastor-Satorras, A. Vespignani,Epidemic outbreaks in complex heterogeneous networks,Eur. Phys. J. B,26 (2002), 521-529.

22.C. N. Podder, O. Sharomi, A. B. Gumel, et al.Mathematical analysis of a model for assessing the impact of antiretroviral therapy, voluntary testing and condom use in curtailing the spread of HIV,Differential Equations and Dynamical Systems,19 (2011), 283-302.    

23.S. M. A. Rahman, N. K. Vaidya, X. Zou,Impact of early treatment programs on HIV epidemics: an immunity-based mathematical model,Math. Biosci.,280 (2016), 38-49.    

24.Comité de Coordenação do Combate a Sida, Rapport de Progrès de la riposte VIH/SIDA Cabo Verde,2015.

25.E. M. Rocha, C. J. Silva, D. F. M. Torres,The effect of immigrant communities coming from higher incidence tuberculosis regions to a host country,Ricerche Di Matematica,67 (2018), 89-112.    

26.C. J. Silva, D. F. M. Torres, A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde,Ecological Complexity,30 (2017), 70-75.    

27.C. J. Silva, D. F. M. Torres,Global stability for a HIV/AIDS model,Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics,67 (2018), 93-101.    

28.C. Zhang, B. Zheng, L. Wang,Multiple Hopf bifurcations of symmetric BAM neural network model with delay,Appl. Math. Lett.,22 (2009), 616-622.    

29.WHO, HIV/AIDS, Fact sheets,19 July 2018.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved