Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Electrical properties of covalently functionalized graphene

Department of Physics, Portland State University, 1719 SW 10th Ave., Portland, OR 97201, USA

We have employed first-principle calculations to study transformation of graphene’s electronic structure under functionalization by covalent bonds with di erent atomic and molecular groups - epoxies, amines, PFPA. It is shown that this functionalization leads to an opening in the graphene’s band gap on order of tens meV, but also leads to reduction of electrical conductivity. We also discuss the influence of charge exchange between the functionalizing molecule and graphene’s conjugated electrons on electron transport properties.
  Figure/Table
  Supplementary
  Article Metrics

References

1. Elias DC, Nair RR, Mohiuddin TMG, et al. (2009) Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane. Science 323: 610–613.    

2. Flores MZS, Autreto PAS, Legoas SB, et al. (2009) Graphene to graphane: a theoretical study. Nanotechnology 20: 465704.    

3. Leenaerts O, Partoens B, Peeters F (2009) Adsorption of small molecules on graphene. Microelectron J 40: 860–862.    

4. Liu Z-B, Xu Y-F, Zhang X-L, et al. (2009) Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J Phys Chem B 113: 9681– 9686.    

5. Choi J, Kim K-J, Kim B, et al. (2009) Covalent Functionalization of Epitaxial Graphene by Azidotrimethylsilane. J Phys Chem C 113: 9433–9435.    

6. Quintana M, Spyrou K, Grzelczak M, et al. (2010) Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano 4: 3527–3533.    

7. Liu L-H, Yan M (2009) Simple method for the covalent immobilization of graphene. Nano Lett 9: 3375–3378.    

8. Liu L-H, Zorn G, Castner DG, et al. (2010) A simple and scalable route to wafer-size patterned graphene. J Mater Chem 20: 5041.    

9. Liu L-H, Nandamuri G, Solanki R, et al. (2011) Electrical Properties of Covalently Immobilized Single-Layer Graphene Devices. J Nanosci Nanotechnol 11: 1288–1292.    

10. Leenaerts O, Partoens B, Peeters F (2008) Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys Rev B 77: 125416.    

11. Leenaerts O, Partoens B, Peeters F (2008) Paramagnetic adsorbates on graphene: A charge transfer analysis. Appl Phys Lett 92: 243125.    

12. Erni R, Rossell M, Nguyen M-T, et al. (2010) Stability and dynamics of small molecules trapped on graphene. Phys Rev B 82: 165443.    

13. Z´olyomi V, Ruszny´ak A, Koltai J, et al. (2010) Functionalization of graphene with transition metals. Phys Status Solidi B 247: 2920–2923.    

14. Park H, Zhao J, Lu JP ()2006 E ects of sidewall functionalization on conducting properties of single wall carbon nanotubes. Nano Lett 6: 916–919.

15. Calzolari A, Marzari N, Souza I, et al. (2004) Ab initio transport properties of nanostructures from maximally localized Wannier functions. Phys Rev B 69: 035108.    

16. Dubois S-M, Zanolli Z, Declerck X, et al. (2009) Electronic properties and quantum transport in Graphene-based nanostructures. Eur Phys J B 72: 1–24.    

17. Schedin F, Geim A, Morozov S, et al. (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6: 652–655.    

18. Saxena AP, Deepa M, Joshi AG, et al. (2011) Poly(3,4-ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: improved conduction and electrochromism. ACS Appl Mater Interface 3: 1115–1126.    

19. Delley B (2000) From molecules to solids with the DMol approach. J Chem Phys 113: 7756. 20. Becke A (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38: 3098.    

21. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37: 785.    

22. Vosko SH,Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58: 1200–1211.    

23. Saito R, Dresselhaus G, Dresselhaus M, et al. (1998) Physical properties of carbon nanotubes, volume 3. London, Imperial College Press London.

24. Wallace P (1947) The Band Theory of Graphite. Phys Rev 71: 622–634.    

25. Kutana A, Giapis KP (2008) Analytical carbon-oxygen reactive potential. J Chem Phys 128: 234706.    

26. Loh KP, Bao Q, Ang PK, et al. (2010) The chemistry of graphene. J Mater Chem 20: 2277.    

27. Suggs K, Reuven D, Wang X (2011) Electronic Properties of Cycloaddition-Functionalized Graphene. J Phys Chem C 115: 33133317.

28. Plachinda P, Evans D, Solanki R (2012) Thermal conductivity of graphene nanoribbons: effect of the edges and ribbon width. J Heat Transfer 134: 122401.    

29. Kosynkin DV, Higginbotham AL, Sinitskii A, et al. (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458: 872–876.    

30. Plachinda P, Evans D, Solanki R (2013) Electrical conductivity of PFPA functionalized graphene. Solid State Electronics 79: 262–267.    

31. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 7: 487–496.

Copyright Info: © 2017, Paul Plachinda, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved