Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Direct observations of ferromagnetic and antiferromagnetic domains in Pt/Co/Cr2O3/Pt perpendicular exchange biased film

1 Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan;
2 Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, 1-1-1, Kouto, Sayo, Hyogo 6795198, Japan

Special Issues: X-ray microscopy in Materials Sciences

By using focused soft X-rays, magnetic domain imaging based on X-ray magnetic circular dichroism (XMCD) measurements was performed on a Pt/Co/Cr2O3/Pt film that exhibits both perpendicular magnetic anisotropy and perpendicular exchange anisotropy. In the AC-demagnetized state, spatial distributions of the XMCD corresponding to the magnetic domains were clearly observed. In particular, ferromagnetic and antiferromagnetic magnetic domains were separately observed by tuning the photon energy to either the ferromagnetic Co L3 edge or the antiferromagnetic Cr L3 edge. The ferromagnetic domain pattern is similar to the ones previously reported for Co/Pt multilayers, and the ferromagnetic and antiferromagnetic domains are spatially coupled. The magnetization curve measured after cooling the sample, while maintaining the demagnetized state, exhibited positive and negative exchange biases simultaneously, which suggests that the exchange bias is determined on a domain-by-domain basis.
  Figure/Table
  Supplementary
  Article Metrics

Keywords magnetic domain; antiferromagnet; exchange bias; focused soft X-ray; soft X-ray magnetic circular dichroism; soft X-ray absorption; microspectroscopy; fresnel zone plate

Citation: Yu Shiratsuchi, Yoshinori Kotani, Saori Yoshida, Yasunori Yoshikawa, Kentaro Toyoki, Atsushi Kobane, Ryoichi Nakatani, Tetsuya Nakamura. Direct observations of ferromagnetic and antiferromagnetic domains in Pt/Co/Cr2O3/Pt perpendicular exchange biased film. AIMS Materials Science, 2015, 2(4): 484-496. doi: 10.3934/matersci.2015.4.484

References

  • 1. Hubert A, Schäfer R (2000) Magnetic Domains, New York, Springer, 395-520.
  • 2. Wiesendanger R (1994) Scanning Probe Microscopy and Spectroscopy, Cambridge, Cambridge Press, 251-264.
  • 3. MacCord J (2015) Progress in magnetic domain observation by advanced magneto-optical microscopy. J Phys D Appl Phys 48:333001.    
  • 4. Spanke D, Dresselhaus J, Kinoshita T, et al. (1996) Element-specific magnetic domain imaging based on linear and circular magnetic dichroism in photoabsorption. J Electron Spectrosc Relat Phenom 78: 299-302.    
  • 5. Fischer P, Kim DH, Mesler BL, et al. (2007) Exploring nanomagnetism with soft X-ray microscopy. Surf Sci 601: 4680-4685.    
  • 6. Meiklejohn WH, Bean CP (1957) New magnetic anisotropy. Phys Rev 105: 904-913.    
  • 7. Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203-232.    
  • 8. Berkowitz AE, Takano K (1999) Exchange anisotropy - a review. J Magn Magn Mater 200: 552-570.    
  • 9. Dieny B, Speriosu VS, Parkin SSP, et al. (1991) Giant magnetoresistive in soft ferromagnetic multilayers. Phys Rev B 43: 1297-1300.    
  • 10. Mauri D, Siegmann HC, Bagus PS, et al. (1987) Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. J Appl Phys 62: 3047-3049.    
  • 11. Malozemoff AP (1987) Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interface. Phys Rev B 35: 3679-3682.
  • 12. Malozemoff AP (1988) Mechanisms of exchange anisotropy (invited). J Appl Phys 63: 3874-3879.    
  • 13. Duò L, Finazzi M, Ciccaci F (2010) Magnetic properties of antiferromagnetic oxide materials. Weinheim: Wiley-VCH, 301-339.
  • 14. Scholl A, Stöhr J, Lüning J, et al. (2000) Observation of antiferromagnetic domains in epitaxial thin films. Science 287: 1014-1016.    
  • 15. Nolting F, Scholl A, Stöhr J, et al. (2000) Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 405: 767-769.    
  • 16. Ohldag H, Regan TJ, Stöhr J, et al. (2001) Spectroscopic identification and direct imaging of interfacial magnetic spins. Phys Rev Lett 87: 247201.    
  • 17. Arai K, Okuda T, Tanaka A, et al. (2012) Three-dimensional spin orientation in antiferromagnetic domain walls of NiO studied by X-ray magnetic linear dichroism photoemission electron microscopy. Phys Rev B 85: 104418.    
  • 18. Shiratsuchi Y, Noutomi H, Oikawa H, et al. (2012) Detection and in situ switching of unreversed interfacial antiferromagnetic spins in a perpendicular-exchange-biased system. Phys Rev Lett 109: 077202.    
  • 19. He X, Wang Y, Wu N, et al. (2010) Robust isothermal electric control of exchange bias at room temperature. Nature Mater 9: 579-585.    
  • 20. Ashida T, Oida M, Shimomura N, et al. (2015) Isothermal electric switching of magnetization in Cr2O3/Co thin film system. Appl Phys Lett 106: 132407.    
  • 21. Toyoki K, Shiratsuchi Y, Kobane A, et al. (2015) Magnetoelectric switching of perpendicular exchange bias in Pt/Co/a-Cr2O3/Pt stacked films. Appl Phys Lett 106: 1624004.
  • 22. Martin T, Anderson JC (1966) Antiferromagnetic domain switching in Cr2O3. IEEE Trans Magn 2: 446-449.    
  • 23. Shiratsuchi Y, Oikawa H, Kawahara S, et al. (2012) Strong perpendicular magnetic anisotropy at Co(111)/a-Cr2O3(0001) interface. Appl Phys Express 5: 043004.    
  • 24. Muro T, Nakamura T, Matsushita T, et al. (2005) Circular dichroism measurement of soft X-ray absorption using helicity modulation of helical undulator radiation. J Electron Spectrosc Relat Phenom 144-147: 1101-1103.    
  • 25. Kotani Y et al. in preparation.
  • 26. Fischer P, Eimüller T, Schütz G, et al. (1999) Magnetic domain imaging with a transmission X-ray microscope. J Magn Magn Mater 198-199: 624-627.    
  • 27. Fischer P, Fadley CS (2012) Probing nanoscale behavior of magnetic materials with soft X-ray spectromicroscopy. Nanotechnol Rev 1: 5-15.
  • 28. Ohtori H, Iwano K, Mitsumata C, et al. (2014) Visualization of magnetic dipolar interaction based on scanning transmission X-ray microscopy. J Phys Conf Series 502: 012010.    
  • 29. Robertson MJ, Agostino CJ, N'Diaye AT, et al. (2015) Quantitative x-ray magnetic circular dichroism mapping with high spatial resolution full-field magnetic transmission soft x-ray spectro-microscopy. J Appl Phys 117: 17D145.
  • 30. Kim GB, Song HJ, Shin HJ, et al. (2005) X-ray absorption spectroscopy in total electron yield mode of scanning photoelectron microscopy. J Electron Spectrosc Relat Phenom 148: 137-141.    
  • 31. Nolle D, Weigand M, Schütz G, et al. (2011) High contrast magnetic and nonmagnetic sample current microcopy for bulk and transparent sample using soft X-rays. Microsc Microanal 17: 834-842.
  • 32. Nolle D, Weigand M, Audehm P, et al. (2012) Note: Unique characterization possibilities in the ultra high vacuum scanning transmission x-ray microscope (UHV-STXM) “MAXYMUS” using a rotatable permanent magnetic field up to 0.22 T. Rev Sci Instrum 83: 046112.    
  • 33. Nakajima R, Stöhr J, Idzerda YU (1999) Electron-yield saturation effects in L-edge x-ray magnetic circular dichroism spectra of Fe, Co, and Ni. Phys Rev B 59:6421-6429.    
  • 34. Toyoki K, Shiratsuchi Y, Nakamura T, et al. (2014) Equilibrium surface magnetization of a-Cr2O3 studied through interfacial chromium magnetization in Co/a-Cr2O3 layered structures. Appl Phys Express 7: 114201.    
  • 35. Astrov DN (1961) Magnetoelectric effect in chromium oxide. J Exptl Theoret Phys 40: 1035-1041.
  • 36. Ji X, Pakhomov AB, Krishnan KM (2007) Asymmetric magnetic reversal of perpendicular exchange biased (Co/Pt)5/IrMn probed by magnetoresistance and magnetic force microscopy. J Appl Phys 101: 09E507.
  • 37. Liu ZY, Li N, Zhang F, et al. (2008) Effect of magnetic field on domain-wall structures in two antiferromagnetically coupled Co/Pt multilayers. Appl Phys Lett 93: 032502.    
  • 38. Thole BT, Carra P, Sette F, et al. (1992) X-ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett 68: 1943-1946.    
  • 39. Carra P, Thole BT, Altarelli M, et al. (1993) X-ray circular dichrosism and local magnetic fields. Phys Rev Lett 70: 694-697.    
  • 40. Oura M, Nakamura T, Takeuchi T, et al. (2007) Degree of circular polarization of soft X-rays emitted from a multi-polarization-mode undulator characterized by means of magnetic circular dichroism measurements. J Synchrotron Rad 17: 483-486.
  • 41. Andeev AF (1996) Macroscopic magnetic fields of antiferromagnets. J Exptl Theoret Phys 63: 758-762.    
  • 42. Belashchenko KD (2010) Equilibrium magnetization at the boundary of a magnetoelectric antiferromagnet. Phys Rev Lett 105: 147204.    
  • 43. Corliss LM, Hastings JM, Nathans R, et al. (1965) Magnetic structure of Cr2O3. J Appl Phys 36: 1099-1100.    
  • 44. Scholl A, Nolting F, Seo JW, et al. (2004) Domain-size-dependent exchange bias in Co/LaFeO3. Appl Phys Lett 85: 4085-4087.    
  • 45. Hoffmann A (2004) Symmetry driven irreversibilities at ferromagnetic-antiferromagnetic interfaces. Phys Rev Lett 93: 097203.    

 

This article has been cited by

  • 1. Yu Shiratsuchi, Ryoichi Nakatani, Perpendicular Exchange Bias and Magneto-Electric Control Using Cr2O3(0001) Thin Film, MATERIALS TRANSACTIONS, 2016, 10.2320/matertrans.ME201506
  • 2. Renu Choudhary, Takashi Komesu, Pankaj Kumar, Priyanka Manchanda, Kazuaki Taguchi, Taichi Okuda, Koji Miyamoto, Peter A. Dowben, Ralph Skomski, Arti Kashyap, Exchange coupling and spin structure in cobalt-on-chromia thin films, EPL (Europhysics Letters), 2016, 115, 1, 17003, 10.1209/0295-5075/115/17003
  • 3. Satya Prakash Pati, Muftah Al-Mahdawi, Shujun Ye, Yohei Shiokawa, Tomohiro Nozaki, Masashi Sahashi, Finite-size scaling effect on Néel temperature of antiferromagnetic Cr2O3 (0001) films in exchange-coupled heterostructures, Physical Review B, 2016, 94, 22, 10.1103/PhysRevB.94.224417
  • 4. Shi Cao, M Street, Junlei Wang, Jian Wang, Xiaozhe Zhang, Ch Binek, P A Dowben, Magnetization at the interface of Cr2O3 and paramagnets with large stoner susceptibility, Journal of Physics: Condensed Matter, 2017, 29, 10, 10LT01, 10.1088/1361-648X/aa58ba
  • 5. Tomohiro Nozaki, Muftah Al-Mahdawi, Satya Prakash Pati, Shujun Ye, Masashi Sahashi, Control of lateral ferromagnetic domains in Cr2O3/Pt/Co thin film system with positive exchange bias, Applied Physics Letters, 2017, 110, 13, 132408, 10.1063/1.4979546
  • 6. Muftah Al-Mahdawi, Satya Prakash Pati, Yohei Shiokawa, Shujun Ye, Tomohiro Nozaki, Masashi Sahashi, Low-energy magnetoelectric control of domain states in exchange-coupled heterostructures, Physical Review B, 2017, 95, 14, 10.1103/PhysRevB.95.144423
  • 7. Tomohiro Nozaki, Masashi Sahashi, Magnetoelectric manipulation and enhanced operating temperature in antiferromagnetic Cr2O3 thin film, Japanese Journal of Applied Physics, 2018, 57, 9, 0902A2, 10.7567/JJAP.57.0902A2
  • 8. Tomohiro Nozaki, Muftah Al-Mahdawi, Yohei Shiokawa, Satya Prakash Pati, Shujun Ye, Yoshinori Kotani, Kentaro Toyoki, Tetsuya Nakamura, Motohiro Suzuki, Syougo Yonemura, Tatsuo Shibata, Masashi Sahashi, Manipulation of Antiferromagnetic Spin Using Tunable Parasitic Magnetization in Magnetoelectric Antiferromagnet, physica status solidi (RRL) - Rapid Research Letters, 2018, 10.1002/pssr.201800366
  • 9. Yu Shiratsuchi, Shunsuke Watanabe, Shogo Yonemura, Tatsuo Shibata, Ryoichi Nakatani, Frustration and relaxation of antiferromagnetic domains reversed by magneto-electric field cooling in a Pt/Co/Au/Cr2O3/Pt-stacked film, AIP Advances, 2018, 8, 12, 125313, 10.1063/1.5053136
  • 10. Yu Shiratsuchi, Hiroaki Yoshida, Yoshinori Kotani, Kentaro Toyoki, Thi Van Anh Nguyen, Tetsuya Nakamura, Ryoichi Nakatani, Antiferromagnetic domain wall creep driven by magnetoelectric effect, APL Materials, 2018, 6, 12, 121104, 10.1063/1.5053928
  • 11. Yu Shiratsuchi, Shunsuke Watanabe, Hiroaki Yoshida, Noriaki Kishida, Ryoichi Nakatani, Yoshinori Kotani, Kentaro Toyoki, Tetsuya Nakamura, Observation of the magnetoelectric reversal process of the antiferromagnetic domain, Applied Physics Letters, 2018, 113, 24, 242404, 10.1063/1.5053925

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Yu Shiratsuchi, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved