Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles

1 Department of Chemical Engineering, University of Missouri, Columbia, MO 65211 USA
2 Department of Civil & Environmental Engineering , University of Missouri, Columbia, MO 65211 USA
3 Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

Modern reverse osmosis (RO)/nanofiltration (NF) membranes are primarily made of thin-film composites (TFC) fabricated through interfacial polymerization of m-phenylene diamine (MPD) and trimesoyl chloride (TMC) on a polysulfone (PSF) supporting membrane. In this study, two types of bimodal silica nanoparticles (~80 nm) with different internal pore structures were synthesized and incorporated into the polyamide (PA) thin-film layer during interfacial polymerization at concentrations varying from 0 to 0.1 wt%. The as-prepared membranes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, and their performances were evaluated in terms of the water permeability and salt rejection. The results showed the water permeability increased with increasing BSN concentrations, reaching a maximum of 53.5 L m−2 h−1 at a bimodal silica nanoparticle (BSN) concentration of 0.5 wt% (pressure at 300 psi, NaCl concentration: 2000 ppm). This represented a flux increase of approximately 40%, while a near constant salt rejection of 95% was maintained. The study demonstrated that the internal micro-mesoporous structures of bimodal silica nanoparticles contributed significantly to the membrane performance, which is consistent with previous studies with relatively uniform internal pores.
  Article Metrics

Keywords Bimodal silica nanoparticles; interfacial polymerization; polyamide; water purification, thin-film nanocomposite

Citation: Zhe Yang, Jun Yin, Baolin Deng. Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles. AIMS Environmental Science, 2016, 3(2): 185-198. doi: 10.3934/environsci.2016.2.185


  • 1. Mezher T, Fath H, Abbas Z, et al. (2011) Techno-economic assessment and environmental impacts of desalination technologies. Desalination 266: 263-273.    
  • 2. Su J, Zhang S, Ling MM, et al. (2012) Forward osmosis: an emerging technology for sustainable supply of clean water. Clean Technol Envir 14: 507-511.    
  • 3. Fritzmann C, Löwenberg J, Wintgens T, et al. (2007) State-of-the-art of reverse osmosis desalination. Desalination 216: 1-76.    
  • 4. Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J Membrane Sci 370: 1-22.    
  • 5. Xu J, Wang Z, Yu L, et al. (2013) A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties. J Membrane Sci 435: 80-91.    
  • 6. Daraei P, Madaeni SS, Salehi E, et al. (2013) Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: Preparation, characterization and performance in dye removal. J Membrane Sci 436: 97-108.    
  • 7. Zhu X, Loo HE, Bai R (2013) A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J Membrane Sci 436: 47-56.    
  • 8. Li D, Wang H (2010) Recent developments in reverse osmosis desalination membranes. J Mater Chem 20: 4551.    
  • 9. Wei J, Jian X, Wu C, et al. (2005) Influence of polymer structure on thermal stability of composite membranes. J Membrane Sci 256: 116-121.
  • 10. Kim HI, Kim SS (2006) Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane. J Membrane Sci 286: 193-201.    
  • 11. Chen G, Li S, Zhang X, et al. (2008) Novel thin-film composite membranes with improved water flux from sulfonated cardo poly(arylene ether sulfone) bearing pendant amino groups. J Membrane Sci 310: 102-109.    
  • 12. Tarboush BJA, Rana D, Matsuura T, et al. (2008) Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules. J Membrane Sci 325: 166-175.    
  • 13. Yu S, Liu M, Liu X, et al. (2009) Performance enhancement in interfacially synthesized thin-film composite polyamide-urethane reverse osmosis membrane for seawater desalination. J Membrane Sci 342: 313-320.    
  • 14. Mansourpanah Y, Momeni Habili E (2013) Preparation and modification of thin film PA membranes with improved antifouling property using acrylic acid and UV irradiation. J Membrane Sci 430: 158-166.    
  • 15. Zhao L, Chang PCY, Yen C, et al. (2013) High-flux and fouling-resistant membranes for brackish water desalination. J Membrane Sci 425-426: 1-10.    
  • 16. Li S, Wang Z, Zhang C, et al. (2013) Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. J Membrane Sci 436: 121-131.    
  • 17. Buonomenna MG (2013) Nano-enhanced reverse osmosis membranes. Desalination 314: 73-88.    
  • 18. Johansson EM, Ballem MA, Cordoba JM, et al. (2011) Rapid synthesis of SBA-15 rods with variable lengths, widths, and tunable large pores. Langmuir 27: 4994-4999.    
  • 19. Kim E-S, Deng B (2011) Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications. J Membrane Sci 375: 46-54.    
  • 20. Jeong BH, Hoek EMV, Yan Y, et al. (2007) Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J Membrane Sci 294: 1-7.    
  • 21. Jadav GL, Singh PS (2009) Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties. J Membrane Sci 328: 257-267.    
  • 22. Rajaeian B, Rahimpour A, Tade MO, et al. (2013) Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles. Desalination 313: 176-188.    
  • 23. Yin J, Zhu G, Deng B (2013) Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. J Membrane Sci 437: 237-248.    
  • 24. Dumée L, Lee J, Sears K, et al. (2013) Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems. J Membrane Sci 427: 422-430.    
  • 25. Kim CE, Yoon JS, Hwang HJ (2008) Synthesis of nanoporous silica aerogel by ambient pressure drying. J Sol-Gel Sci Techn 49: 47-52.
  • 26. Yin J, Kim ES, Yang J, et al. (2012) Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J Membrane Sci 423-424: 238-246.    
  • 27. Wu H, Tang B, Wu P (2013) Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles. J Membrane Sci 428: 341-348.    
  • 28. Mori H, Uota M, Fujikawa D, et al. (2006) Synthesis of micro-mesoporous bimodal silica nanoparticles using lyotropic mixed surfactant liquid-crystal templates. Micropor Mesopor Mat 91: 172-180.    
  • 29. Kosmulski M (2002) The pH-dependent surface charging and the points of zero charge. J Colloid Interface Sci 253: 77-87.    
  • 30. Lee HS, Im SJ, Kim JH, et al. (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 219: 48-56.    
  • 31. Shawky HA, Chae SR, Lin S, et al. (2011) Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination 272: 46-50.    
  • 32. Viart N, Niznansky D, Rehspringer JL (1997) Structural Evolution of a Formamide Modified Sol--Spectroscopic Study. J Sol-Gel Sci Techn 8: 183-187.
  • 33. Wu H, Tang B, Wu P (2013) Optimization, characterization and nanofiltration properties test of MWNTs/polyester thin film nanocomposite membrane. J Membrane Sci 428: 425-433.    
  • 34. Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membrane Sci 479: 256-275.
  • 35. Yin J, Zhu G, Deng D (2016) Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379: 93-101.    


This article has been cited by

  • 1. Jaydevsinh M. Gohil, Akkihebbal K. Suresh, Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies, Journal of Membrane Science, 2017, 541, 108, 10.1016/j.memsci.2017.06.092
  • 2. Mahdi Fathizadeh, Huynh Ngoc Tien, Konstantin Khivantsev, Zhuonan Song, Fanglei Zhou, Miao Yu, Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination, Desalination, 2017, 10.1016/j.desal.2017.07.014
  • 3. Zhe Yang, Yichao Wu, Hao Guo, Xiao-Hua Ma, Chun-er Lin, Ying Zhou, Bin Cao, Bao-ku Zhu, Kaimin Shih, Chuyang Y. Tang, A novel thin-film nano-templated composite membrane with in situ silver nanoparticles loading: Separation performance enhancement and implications, Journal of Membrane Science, 2017, 10.1016/j.memsci.2017.09.046
  • 4. Zhe Yang, Xiao-Hua Ma, Chuyang Y. Tang, Recent development of novel membranes for desalination, Desalination, 2017, 10.1016/j.desal.2017.11.046
  • 5. Zhe Yang, Xiaoyu Huang, Jianqiang Wang, Chuyang Y. Tang, Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate, Frontiers of Chemical Science and Engineering, 2017, 10.1007/s11705-017-1695-2
  • 6. Obadia K. Bishoge, Lingling Zhang, Shaldon L. Suntu, Hui Jin, Abraham A. Zewde, Zhongwei Qi, Remediation of water and wastewater by using engineered nanomaterials: A review, Journal of Environmental Science and Health, Part A, 2018, 1, 10.1080/10934529.2018.1424991
  • 7. Ahmed Al Mayyahi, Thin-film composite (TFC) membrane modified by hybrid ZnO-graphene nanoparticles (ZnO-Gr NPs) for water desalination, Journal of Environmental Chemical Engineering, 2018, 6, 1, 1109, 10.1016/j.jece.2018.01.035
  • 8. Ahmed Al Mayyahi, TiO2 Polyamide Thin Film Nanocomposite Reverses Osmosis Membrane for Water Desalination, Membranes, 2018, 8, 3, 66, 10.3390/membranes8030066
  • 9. Zhe Yang, Xiaoyu Huang, Xiao-hua Ma, Zhi-wen Zhou, Hao Guo, Zhikan Yao, Shien-Ping Feng, Chuyang Y. Tang, Fabrication of a novel and green thin-film composite membrane containing nanovoids for water purification, Journal of Membrane Science, 2018, 10.1016/j.memsci.2018.10.057
  • 10. Hamed Azizi Namaghi, Mahdi Pourafshari Chenar, Ali Haghighi Asl, Mohammadamin Esmaeili, Arto Pihlajamäki, Mari Kallioinen, Mika Mänttäri, Ultra-desulfurization of sulfur recovery unit wastewater using thin film nanocomposite membrane, Separation and Purification Technology, 2019, 221, 211, 10.1016/j.seppur.2019.03.096
  • 11. Zhe Yang, Hao Guo, Zhi-kan Yao, Ying Mei, Chuyang Y. Tang, Hydrophilic Silver Nanoparticles Induce Selective Nanochannels in Thin Film Nanocomposite Polyamide Membranes, Environmental Science & Technology, 2019, 10.1021/acs.est.9b00473
  • 12. Zhi‐Chien Ng, Chun‐Yew Chong, Woei‐Jye Lau, Mustafa Karaman, Ahmad F Ismail, Boron removal and antifouling properties of thin‐film nanocomposite membrane incorporating PECVD‐modified titanate nanotubes, Journal of Chemical Technology & Biotechnology, 2019, 10.1002/jctb.6044

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Baolin Deng, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved