Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Effects of urban green areas on air temperature in a medium-sized Argentinian city

1 Climatología, Facultad de Ciencias Agrarias Universidad Nacional de Rosario (FCA-UNR), Rosario, Argentina;
2 Biología, Facultad de Ciencias Agrarias Universidad Nacional de Rosario (FCA-UNR), Argentina;
3 Consejo de Investigaciones Universidad Nacional de Rosario (CIUNR UNR), Rosario, Argentina;
4 Área Física de la Atmósfera, Radiación Solar y Astropartículas, Instituto de Física Rosario (CONICET - Universidad Nacional de Rosario), and Laboratorio de Eficiencia Energética, Sustentabilidad y Cambio Climático, IMAE, FCEIA/UNR, Rosario, Argentina;
5 RUAF Foundation-International network of Resource Centres on Urban Agriculture and Food Security, Netherlands;
6 School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA

Special Issues: Urban Greening for Low Carbon Cities

Urban climate is the result of both atmospheric and geographic factors affecting a region, as well as the morphology, structures and human activities in a city. Urban vegetation in particular affects this climate at a local scale and provides many other social, economic and ecological benefits. Thus, it is important to explore the effects of different green areas used for urban and periurban agriculture and forestry activities (UPAF) on daily atmospheric temperature and the required degrees of cooling or refrigerating temperature. Comfort temperatures were defined using a range 18-24°C and analyzed using actual measured as well as forecasted temperatures using a future scenario. Actual temperatures were recorded from September 2013 to August 2014 using digital sensors across eight sites in Rosario, Argentina: three in the central core with no vegetation, one in the central core with street trees, one in an urban agriculture site, one in a public park and two in periurban agricultural areas. Results show that air temperature in the central core with no vegetation were higher than those in other sites with vegetation during day and night, with the exception of the temperatures measured at the central core site with street trees. Findings also show that temperature effects in urban agricultural gardens of approximately 0.2 ha were similar to those of gardens and public parks 2-3 ha in size. Three UPAF types were classified according to cooling degree days, which decreased in order from (1) central core with no trees; (2) central core with street trees and public parks; and (3) urban and periurban agriculture areas. Conversely, the opposite trends for heating degree days were found. Results from this study can be used for integrating UPAF measures into climate change mitigation and urban planning policies in medium-sized cities in the developing world.
  Figure/Table
  Supplementary
  Article Metrics

References

1. Fernández García F (1996) Manual de climatología aplicada. Clima, medio ambiente y planificación. Madrid. Ed. Síntesis.

2. Cuadrat J, Pita MF (2000) Climatología. Madrid. Ediciones Cátedra, Grupo Amaya S.A.

3. Population Reference Bureau (2015) Human Population: Urbanization. Available from: http://www.prb.org/Publications/Lesson-Plans/HumanPopulation/Urbanization.aspx

4. Gago A, Hanemann M, Labandeira X, et al. (2013) Climate change, buildings and energy prices, In Fouquet, R. Author, Handbook of Energy and Climate Change. Cheltenham: Edward Elgar, p 434-452.

5. Easterling DR, Meehl GA, Parmesan C, et al. (2000). Climate extremes: observations, modeling, and impacts. Science 289: 2068-2074.    

6. Fernández F, Montávez JP, González-Rouco JF, et al. (2004) Relación entre la estructura espacial de la isla térmica y la morfología urbana de Madrid. In: García Cordón J C, Liaño D, Fernándes de Arróyabe P, Garmendia C, Rasilla D (eds.) El clima entre el Mar y la Montaña. Santander, Asoc. Española de Climatología y Universidad de Cantabria. Serie A, 4:641-649.

7. Oke TR (1973) City size and the urban heat island. Atmos Env 7: 769-779.    

8. Szegedi S, Kircsi A (2003) The development of the urban heat island under various weather conditions in Debrecen, Hungary. Debrecen .University of Debrecen, Hungary.

9. Correa EN, Flores Larsen S, Lesino G (2003) Isla de Calor Urbana: Efecto de los Pavimentos. Informe de Avance. Avances Energ Renov Medio Ambient 7: 11.25-11.30.

10. Maristany A, Abadía L, Angiolini S, et al. (2008) Estudio del fenómeno de la isla de calor en la ciudad de Córdoba-Resultados preliminares. Avances Energ Renov Medio Ambient 12: 11.69-11.75.

11. IPCC (2013) Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Stocker TF, Qin D, Plattner G-K, et al. (eds.). Cambridge, Cambridge University Press, United Kingdom and New York, NY, USA. Available from: http://www.climatechange2013.org/images/report/WG1AR5_TS_FINAL.pdf.

12. Sanchez-Rodriguez R (2009) Learning to adapt to climate change in urban areas. A review of recent contributions. Curr Opin Env Sust 1: 201-206.    

13. Mavrogianni A, Davies M, Batty M, et al. (2011) The comfort, energy and health implications of London's urban heat island. Build Serv Eng Res Technol 0143624410394530.

14. Fischer EM, Oleson KW, Lawrence DM (2012) Contrasting urban and rural heat stress responses to climate change. Geophys Res Lett 39: 3.

15. Sivak M (2009) Potential energy demand for cooling in the 50 largest metropolitan areas of the world: Implications for developing countries. Energ Policy 37: 1382-1384.    

16. Kolokotroni M, Ren X, Davies M, et al. (2012) London’s urban heat island: Impact on current and future energy consumption in office buildings. Energ Buildings 47: 302-311.    

17. Di Leo N, Escobedo FJ, Dubbeling M. (2015) The role of urban green infrastructure in mitigating land surface temperatures in Bobo-Dioulasso, Burkina Faso. Environ Dev Sust 1-20.

18. Coronel AS, Piacentini R (1991) Comportamiento higrotérmico de la ciudad de Rosario (Pampa húmeda argentina) en período estival. Anal Sexto Cong Argent Meteo.

19. Schiller S, Martin Evans J, Katzschner L (2001) Isla de calor, microclima urbano y variables de diseño Estudios en Buenos Aires y Río Gallegos. Avances Energ Renov Medio Ambient 5: 46-50.

20. Mesa NA, Polimeni CM (2003) La isla de calor urbana en zonas áridas andinas de clima mesotermal seco. Caso Área Metropolitana de Mendoza (AMM). Avances Energ Renov Medio Ambient 7: 11-37-11.42.

21. Maristany A, Abadía L, Angiolini S, et al. (2008) Estudio del fenómeno de la isla de calor en la ciudad de Córdoba - Resultados preliminares. Avances Energ Renov Medio Ambient 12: 11.69-11.75.

22. Filippín C, Flores Larsen S (2012) Summer thermal behaviour of compact single family housing in a temperate climate in Argentina. Renew Sust Energ Rev 16: 3439-3455.    

23. Souch CA, Souch C (1993) The effect of trees on summertime below canopy urban climates: a case study Bloomington, Indiana. J Arbor 19: 303-312.

24. Bowler DE, Buyung-Ali L, Knight TM, et al. (2010) Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape Urban Plan 97: 147-155    

25. Norton BA, Coutts AM, Livesley SJ, et al. (2015) Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape Urban Plan 134:127-138.    

26. Zezza A, Tasciotti L (2010) Urban agriculture, poverty, and food security: Empirical evidence from a sample of developing countries. Food Policy 35: 265-273.    

27. IPCC (2014) Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Field CB, Barros VR, Dokken DJ et al. (eds.).. Cambridge, Cambridge University Press, United Kingdom and New York, NY, USA. Available from: http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/ar5_wgII_spm_en.pdf.

28. Revi A, Satterthwaite D, Aragón-Durand F, et al. (2014) Towards transformative adaptation in cities: the IPCC's Fifth Assessment. Environ Urban 26: 11-28.    

29. Municipalidad de Rosario (2014) Available from: http://www.rosario.gov.ar/sitio/caracteristicas/geografica_limites.jsp.

30. Servicio Meteorológico Nacional (2014) Available from: http://www.smn.gov.ar/serviciosclimaticos/?mod=turismo&id=7&provincia=Santa%20Fe&ciudad=Rosario.

31. Municipalidad de Rosario (2015) Available from: http://www.rosario.gov.ar/sitio/desarrollo_social/empleo/programa_au.jsp.

32. Castellani A, Skolnik M (2011) “Devaluacionistas” y “dolarizadores”. La construcción social de las alternativas propuestas por los sectores dominantes ante la crisis de la Convertibilidad. Argentina 1999-2001. Doc Invest Soc 18: 1-21.

33. Potchter O, Cohen P, Bitan A (2006) Climatic behaviour of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. Int J Climatol 26: 1695-1711.    

34. Vardoulakis E, Karamanis D, Fotiadi D, et al. (2013) The urban heat island effect in a small Mediterranean city of high summer temperatures and cooling energy demands. Solar Energy 94:128-144.    

35. Peck JE (2010) Multivariate analysis for community ecologists: step-by-step using PC-ORD. MjM Software Design, US.

36. Szokolay SV (2004) Introduction to architectural science the basis of sustainable design. Oxford. Elsevier, pp 360.

37. Di Rienzo JA, Casanoves F, Balzarini MG, et al. (2008) InfoStat, versión 2008. Córdoba. Universidad Nacional de Córdoba, Argentina.

38. Barros V, Vera C, Agosta E, et al. (2015) Cambio climático en Argentina; tendencias y proyecciones. Tercera Comunicación Nacional a la Convención Marco de las Naciones Unidas sobre el Cambio Climático. Available from: http://www.ambiente.gov.ar/?idarticulo=13291

39. IPCC (2000) Emission scenarios, a special report of working group III of the intergovernmental on climate change. Nakicenovic N. Coordinating Lead Author. Cambridge University Press, Cambridge, pp 570.

40. Núñez M, Solman S, Cabré MF (2009) Regional climate change experiments over southern South America. II: Climate change scenarios in the late twenty-first century. Clim Dynam 32: 1081-1095.

41. Camilloni I (2014) Isla urbana de calor. Atlas ambiental de Buenos Aires. Available from: http://www.atlasdebuenosaires.gov.ar/aaba/index.php?option=com_content&task=view&id=416&Itemid=207&lang=es.

42. Oke TR (1982) The energetic basis of the urban heal island. Q J Roy Meteor Soc 108: 1-24.

43. Hardoy J, Ruete R (2013) Incorporating climate change adaptation into planning for a liveable city in Rosario, Argentina. Environ Urban 25: 339-360.    

Copyright Info: © 2015, Francisco J. Escobedo, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved