Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Fast and sensitive rigid-body fitting into cryo-EM density maps with PowerFit

Bijvoet Center for Biomolecular Research, Faculty of Science—Chemistry, Utrecht University, Utrecht, the Netherlands

Special Issues: Structural analysis of macromolecules using Cryo electron microscopy

Cryo-EM is a rapidly developing method to investigate the three dimensional structure of large macromolecular complexes. In spite of all the advances in the field, the resolution of most cryo-EM density maps is too low for de novo model building. Therefore, the data are often complemented by fitting high-resolution subunits in the density to allow for an atomic interpretation. Typically, the first step in the modeling process is placing the subunits in the density as a rigid body. An objective method for automatic placement is full-exhaustive six dimensional cross correlation search between the model and the cryo-EM data, where the three translational and three rotational degrees of freedom are systematically sampled. In this article we present PowerFit, a Python package and program for fast and sensitive rigid body fitting. We introduce a novel, more sensitive scoring function, the core-weighted local cross correlation, and show how it can be calculated using FFTs for fast translational cross correlation scans. We further improved the search algorithm by using optimized rotational sets to reduce rotational redundancy and by limiting the cryo-EM data size through resampling and trimming the density. We demonstrate the superior scoring sensitivity of our scoring function on simulated data of the 80S D. melanogaster ribosome and on experimental data for four different cases. Through these advances, a fine-grained rotational search can now be performed within minutes on a CPU and seconds on a GPU. PowerFit is free software and can be downloaded from https://github.com/haddocking/powerfit.
  Article Metrics

Keywords cross correlation; exhaustive search; GPU acceleration; Fast Fourier Transform; optimized rotation sets; trimming; resampling; biomolecular complexes

Citation: Gydo C.P.van Zundert, Alexandre M.J.J. Bonvin. Fast and sensitive rigid-body fitting into cryo-EM density maps with PowerFit. AIMS Biophysics, 2015, 2(2): 73-87. doi: 10.3934/biophy.2015.2.73


  • 1. Bai X-C, McMullan G, Scheres SHW (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40: 49-57.    
  • 2. Villa E, Lasker K (2014) Finding the right fit: chiseling structures out of cryo-electron microscopy maps. Curr Opin Struct Biol 25: 118-125.    
  • 3. Pettersen EF, Goddard TD, Huang CC, et al. (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612.    
  • 4. Esquivel-Rodriguez J, Kihara D (2013) Computational methods for constructing protein structure models from 3D electron microscopy maps. J Struct Biol 184: 93-102.    
  • 5. Volkmann N, Hanein D (1999) Quantitative fitting of atomic models into observed densities derived by electron microscopy. J Struct Biol 125: 176-184.    
  • 6. Rosemann AM (2000) Docking structures of domains into maps from cryo-electron microscopy using local correlation. Acta Crystallogr D Biol Crystallogr 56: 1332-1340.    
  • 7. Chacón P, Wriggers W (2002) Multi-resolution contour-based fitting of macromolecular structures. J Mol Biol 317: 375-384.    
  • 8. Kovacs JA, Chacón P, Cong Y, et al. (2003) Fast rotational matching of rigid bodies by Fast Fourier transform acceleration of five degrees of freedom. Acta Crystallogr D Biol Crystallogr 59: 1371-1376.    
  • 9. Wu X, Milne JLS, Borgnia MJ, et al. (2003) A core-weighted fitting method for docking atomic structures into low-resolution maps: application to cryo-electron microscopy. J Struct Biol 141: 63-76.    
  • 10. Garzón JI, Kovacs J, Abagyan R, et al. (2007) ADP_EM: fast exhaustive multi-resolution docking for high-throughput coverage. Bioinformatics 23: 427:433.
  • 11. Hrabe T, Chen Y, Pfeffer S, et al. (2012) PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J Struct Biol 178: 177-188.    
  • 12. Hoang TV, Cavin X, Ritchie DW (2013) gEMfitter: A highly parallel FFT-based 3D density fitting tool with GPU texture memory acceleration. J Struct Biol 184: 348-354.    
  • 13. Roseman AM (2003) Particle finding in electron micrographs using a fast local correlation algorithm. Ultramicroscopy 94: 225-236.    
  • 14. Karney CFF (2007) Quaternions in molecular modeling. J Mol Graph Mod 25: 595-604.    
  • 15. Anger AM, Armache J-P, Berninghausen O, et al. (2013) Structures of the human and Drosophila 80S ribosome. Nature 497: 80-85.    
  • 16. Ranson NA, Farr GW, Roseman AM, et al. (2001) ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107: 869-879.    
  • 17. Volkmann N (2002) A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. J Struct Biol 138: 123-129.    
  • 18. Pintilie G, Chiu W (2012) Comparison of Segger and other methods for segmentation and rigid body docking of molecular components in cryo-EM density maps. Biopolymers 97: 742-760.    
  • 19. Pintilie GD, Zhang J, Goddard TD, et al. (2010) Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J Struct Biol 170: 427-438.    
  • 20. Chen D-H, Madan D, Weaver J, et al. (2013) Visualizing GroEL/ES in the act of encapsulating a folding protein. Cell 153: 1354-1365.    
  • 21. Guo Q, Yuan Y, Xu Y, et al. (2011) Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A 108: 13100-13105.    
  • 22. Boehringer D, O'Farrell HC, Rife JP, et al. (2012) Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis. J Biol Chem 287: 10453-10459.    


This article has been cited by

  • 1. G.C.P. van Zundert, A.M.J.J. Bonvin, Defining the limits and reliability of rigid-body fitting in cryo-EM maps using multi-scale image pyramids, Journal of Structural Biology, 2016, 10.1016/j.jsb.2016.06.011
  • 2. G.C.P. van Zundert, M. Trellet, J. Schaarschmidt, Z. Kurkcuoglu, M. David, M. Verlato, A. Rosato, A.M.J.J. Bonvin, The DisVis and PowerFit web servers: Explorative and Integrative Modeling of Biomolecular Complexes, Journal of Molecular Biology, 2016, 10.1016/j.jmb.2016.11.032
  • 3. Agnel Praveen Joseph, Guido Polles, Frank Alber, Maya Topf, Integrative modelling of cellular assemblies, Current Opinion in Structural Biology, 2017, 46, 102, 10.1016/j.sbi.2017.07.001
  • 4. Alexandre Hoffmann, Valérie Perrier, Sergei Grudinin, A novel fast Fourier transform accelerated off-grid exhaustive search method for cryo-electron microscopy fitting, Journal of Applied Crystallography, 2017, 50, 4, 1036, 10.1107/S1600576717008172
  • 5. D. Salomoni, I. Campos, L. Gaido, J. Marco de Lucas, P. Solagna, J. Gomes, L. Matyska, P. Fuhrman, M. Hardt, G. Donvito, L. Dutka, M. Plociennik, R. Barbera, I. Blanquer, A. Ceccanti, E. Cetinic, M. David, C. Duma, A. López-García, G. Moltó, P. Orviz, Z. Sustr, M. Viljoen, F. Aguilar, L. Alves, M. Antonacci, L. A. Antonelli, S. Bagnasco, A. M. J. J. Bonvin, R. Bruno, Y. Chen, A. Costa, D. Davidovic, B. Ertl, M. Fargetta, S. Fiore, S. Gallozzi, Z. Kurkcuoglu, L. Lloret, J. Martins, A. Nuzzo, P. Nassisi, C. Palazzo, J. Pina, E. Sciacca, D. Spiga, M. Tangaro, M. Urbaniak, S. Vallero, B. Wegh, V. Zaccolo, F. Zambelli, T. Zok, INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures, Journal of Grid Computing, 2018, 10.1007/s10723-018-9453-3
  • 6. Massimiliano Bonomi, Samuel Hanot, Charles H. Greenberg, Andrej Sali, Michael Nilges, Michele Vendruscolo, Riccardo Pellarin, Bayesian Weighing of Electron Cryo-Microscopy Data for Integrative Structural Modeling, Structure, 2018, 10.1016/j.str.2018.09.011
  • 7. Chris Morris, Paolo Andreetto, Lucia Banci, Alexandre M.J.J. Bonvin, Grzegorz Chojnowski, Laura del Cano, José Marıa Carazo, Pablo Conesa, Susan Daenke, George Damaskos, Andrea Giachetti, Natalie E.C. Haley, Maarten L. Hekkelman, Philipp Heuser, Robbie P. Joosten, Daniel Kouřil, Aleš Křenek, Tomáš Kulhánek, Victor S. Lamzin, Nurul Nadzirin, Anastassis Perrakis, Antonio Rosato, Fiona Sanderson, Joan Segura, Joerg Schaarschmidt, Egor Sobolev, Sergio Traldi, Mikael E. Trellet, Sameer Velankar, Marco Verlato, Martyn Winn, West-Life: a virtual research environment for structural biology, Journal of Structural Biology: X, 2019, 100006, 10.1016/j.yjsbx.2019.100006
  • 8. P.I. Koukos, A.M.J.J. Bonvin, Integrative Modelling of Biomolecular Complexes, Journal of Molecular Biology, 2019, 10.1016/j.jmb.2019.11.009
  • 9. Jorge Gomes, Emanuele Bagnaschi, Isabel Campos, Mario David, Luís Alves, João Martins, João Pina, Alvaro López-García, Pablo Orviz, Enabling rootless Linux Containers in multi-user environments: The udocker tool, Computer Physics Communications, 2018, 232, 84, 10.1016/j.cpc.2018.05.021
  • 10. Sony Malhotra, Sylvain Träger, Matteo Dal Peraro, Maya Topf, Modelling structures in cryo-EM maps, Current Opinion in Structural Biology, 2019, 58, 105, 10.1016/j.sbi.2019.05.024
  • 11. Kamal Al Nasr, Christopher Jones, Feras Yousef, Ruba Jebril, PEM-fitter: A Coarse-Grained Method to Validate Protein Candidate Models, Journal of Computational Biology, 2018, 25, 1, 21, 10.1089/cmb.2017.0191
  • 12. Kamal Al Nasr, Feras Yousef, Ruba Jebril, Christopher Jones, Analytical Approaches to Improve Accuracy in Solving the Protein Topology Problem, Molecules, 2018, 23, 2, 28, 10.3390/molecules23020028
  • 13. Maho Yagi-Utsumi, Arunima Sikdar, Chihong Song, Jimin Park, Rintaro Inoue, Hiroki Watanabe, Raymond N. Burton-Smith, Toshiya Kozai, Tatsuya Suzuki, Atsuji Kodama, Kentaro Ishii, Hirokazu Yagi, Tadashi Satoh, Susumu Uchiyama, Takayuki Uchihashi, Keehyoung Joo, Jooyoung Lee, Masaaki Sugiyama, Kazuyoshi Murata, Koichi Kato, Supramolecular tholos-like architecture constituted by archaeal proteins without functional annotation, Scientific Reports, 2020, 10, 1, 10.1038/s41598-020-58371-2
  • 14. Mikael Trellet, Gydo van Zundert, Alexandre M. J. J. Bonvin, , Structural Bioinformatics, 2020, Chapter 11, 145, 10.1007/978-1-0716-0270-6_11
  • 15. M. Martínez, A. Jiménez-Moreno, D. Maluenda, E. Ramírez-Aportela, R. Melero, A. Cuervo, P. Conesa, L. del Caño, Y. C. Fonseca, R. Sánchez-García, D. Strelak, J. J. Conesa, E. Fernández-Giménez, F. de Isidro, C. O. S. Sorzano, J. M. Carazo, R. Marabini, Integration of Cryo-EM Model Building Software in Scipion, Journal of Chemical Information and Modeling, 2020, 10.1021/acs.jcim.9b01032
  • 16. Pablo Orviz Fernández, Mário David, Doina Cristina Duma, Elisabetta Ronchieri, Jorge Gomes, Davide Salomoni, Software Quality Assurance in INDIGO-DataCloud Project: a Converging Evolution of Software Engineering Practices to Support European Research e-Infrastructures, Journal of Grid Computing, 2020, 10.1007/s10723-020-09509-z
  • 17. Maximilian Beckers, Daniel Mann, Carsten Sachse, Structural interpretation of cryo-EM image reconstructions, Progress in Biophysics and Molecular Biology, 2020, 10.1016/j.pbiomolbio.2020.07.004

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Alexandre M.J.J. Bonvin, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved