-
AIMS Mathematics, 2017, 2(4): 580-585. doi: 10.3934/Math.2017.4.580.
Research article
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
A note on derivations and Jordan ideals of prime rings
Department of Mathematics, Punjabi University, Patiala, Punjab-147001, INDIA
Received: , Accepted: , Published:
Keywords: Prime rings; Jordan ideals; Generalized derivations; Martindale ring of quotients; Generalized polynomial identities (GPIs)
Citation: Gurninder S. Sandhu, Deepak Kumar. A note on derivations and Jordan ideals of prime rings. AIMS Mathematics, 2017, 2(4): 580-585. doi: 10.3934/Math.2017.4.580
References:
- 1. S. M. A. Zaidi, M. Ashraf, S. Ali, On Jordan ideals and left (θ;θ)-derivations in prime rings. Internat. J. Math. Math. Sci., 37 (2004), 1957-1964.
- 2. L. Oukhtite, Posner's second theorem for Jordan ideals in rings with involutions. Expo. Math., 29 (2011), 415-419.
- 3. L. Oukhtite, A. Mamouni, M. Ashraf, Commutativity theorems for rings with differential identities on Jordan ideals. Comment. Math. Univ. Carolin., 54 (2013), no. 4, 447-457.
- 4. L. Oukhtite, On Jordan ideals and derivations in rings with involution. Comment. Math. Univ. Carolin., 51 (2010), no. 3, 389-395.
- 5. N. Argac¸, V. de Filippis, Actions of generalized derivations on multilinear polynomials in prime rings. Algebra Colloq., 18(spec 1) (2011) , 955-964.
- 6. V. K. Kharchenko, Differential identities of prime rings. Algebra Logic, 17 (1979), 155-168.
- 7. C. L. Chuang, GPIs having coeffcients in Utumi quotient rings. Proc. Amer. Math. Soc., 103 (1988), 723-728.
- 8. T. S. Erickson, W. Martindale III, J .M. Osborn, Prime nonassociative algebras. Pac. J. Math., 60 (1975), 49-63.
- 9. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity. J. Algebra, 12 (1969), 576-584.
- 10. N. Jacobson, Structure of Rings. Colloquium Publications, vol. 37, Amer. Math. Soc. VII, Provindence, RI, 1956.
- 11. X. W. Xu, The Power Values Properties of Generalized Derivations. Doctoral Thesis of Jilin University, Changchun, 2006.
- 12. K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with Generalized Identities. Pure and Applied Mathematics. vol. 196, Marcel Dekker, New York, 1996.
- 13. M. Brešar, On the distance of the composition of two derivations to the generalized derivations. Glasg. Math. J., 33 (1991), 89-93.
- 14. T. K. Lee, Generalized derivations of left faithful rings. Comm. Algebra, 27 (1999), no. 8, 4057-4073.
- 15. R. Awtar, Lie and Jordan structure in prime rings with derivations. Proc. Amer. Math. Soc., 41 (1973), 67-74.
- 16. I. N. Herstein, A note on derivations. Canad. Math. Bull., 21 (1978), 369-370.
- 17. H. E. Bell, M. N. Daif, On derivations and commutativity in prime rings. Acta Math. Hungar., 66 (1995), 337-343.
This article has been cited by:
- 1. Gurninder S. Sandhu, Deepak Kumar, Correction: A note on derivations and Jordan ideals in prime rings, AIMS Mathematics, 2019, 4, 3, 684, 10.3934/math.2019.3.684
Reader Comments
Copyright Info: 2017, Gurninder S. Sandhu, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *