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Abstract: Let F : R → R be a generalized derivation of a 2-torsion free prime ring R together with
a derivation d. In this paper, we show that a nonzero Jordan ideal J of R contains a nonzero ideal of
R. Further, we use this result to prove that if F([x, y]) ∈ Z(R) for all x, y ∈ J, then R is commutative.
Consequently, it extends a result of Oukhtite, Mamouni and Ashraf.
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1. Introduction

In everything that follows, R denotes an associative ring with center Z(R). Let Q and Qmr stands for
the two-sided Martindale quotient ring and right Utumi quotient ring (also known as maximal right ring
of quotients) of R respectively. The center of Qmr is called extended centroid of R and is denoted by C
(i.e. C = Z(Qmr)). For the basic idea of these objects we refer the reader to [12]. For any a, b ∈ R, a ring
R is called prime ring if aRb = (0) implies a = 0 or b = 0 and is called semi-prime ring if aRa = (0)
implies a = 0. An additive mapping d : R → R is said to be a derivation of R if d(xy) = d(x)y + xd(y)
for all x, y ∈ R. For some fixed a ∈ R, the mapping Ia : R → R such that x 7→ [a, x] for all x ∈ R, is
a well-known example of a derivation. Specifically, Ia is called the inner derivation of R induced by
the element a. In 1991, Brešar [13] introduced a generalized notion of a derivation, called generalized
derivation. A generalized derivation of a ring R is an additive mapping F : R→ R uniquely determined
by a derivation d of R such that F(xy) = F(x)y + xd(y) for any x, y ∈ R. Clearly, every derivation is
a generalized derivation but the converse is not always true. For any a, b ∈ R, F(x) = ax + xb and
F(x) = ax are the most natural examples of a generalized derivation of R associated with d = Ib and
d = 0 respectively. In [14], Lee extended the concept of a generalized derivation. Accordingly, let I
be a dense right ideal of R and δ : I → Qmr be a derivation. A generalized derivation is an additive
mapping F : I → Qmr such that F(xy) = F(x)y + xδ(y) holds for all x, y ∈ I. Further, in this paper
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Lee also showed that F can be uniquely extended to a generalized derivation of Qmr and defined as
F(x) = ax + δ(x) for some a ∈ Qmr (see [14], Theorem 3.)

Recall that, a nonempty set J, which is an additive subgroup of R is said to be a Jordan ideal of R if
J ◦R ⊆ J. The following are some well known facts about Jordan ideals: if J be a nonzero Jordan ideal
of a ring and u ∈ J, then

I. 2J[R,R] ⊆ J, 2[R,R]J ⊆ J ([1], Lemma 2.4)
II. 4u2R ⊆ J, 4Ru2 ⊆ J and 2[u2,R] ⊆ J ([15], proof of Lemma 3)

III. 4uRu ⊆ J ([15], proof of Theorem 3)
IV. 4[u,R]u ⊆ J and 4u[u,R] ⊆ J

A classical result of Herstein [16] states that if a prime ring R with char(R) , 2 admits a derivation d
such that d(x)d(y) = d(y)d(x) for all x, y ∈ R, then R is commutative. Motivated by this situation, Bell
and Daif [17] without any restriction on the char (R), obtained the same conclusion from the identity
d(xy) = d(yx) (i.e. d([x, y]) = 0) where x, y varies over a nonzero ideal of R. In an addition to this,
recently Oukhtite et al. [3] proved the following theorem: Let R be a 2-torsion free prime ring and J
be a nonzero Jordan ideal of R. If R admits a nonzero derivation d such that d([x, y]) ∈ Z(R) for all
x, y ∈ J, then R is commutative. In this paper, we intend to prove this result for generalized derivations.

2. Main Results

Lemma 2.1. Let R be a ring and J be a Jordan ideal of R. Then [[J, J],R] ⊆ J.

Proof. For any r ∈ R and x ∈ J, we have x ◦ r ∈ J. That is, xr + rx ∈ J. For any y ∈ J, we have
xyr+yrx+yxr−yxr = [x, y]r+y(x◦r) ∈ J. Again we have ryx+ xry−rxy+rxy = −r[x, y]+ (x◦r)y ∈ J.
On combining these two expressions, we obtain [[x, y], r] + y ◦ (x ◦ r) ∈ J for any x, y ∈ J and r ∈ R.
Clearly, y ◦ (x ◦ r) ∈ J. Therefore, we have [[x, y], r] ∈ J for all x, y ∈ J and r ∈ R. �

Lemma 2.2. Let R be a 2-torsion free semi-prime ring and J * Z(R) be a Jordan ideal of R. Then J
contains a nonzero ideal of R.

Proof. By Lemma 2.1, we have [[x, y], r] ∈ J for any x, y ∈ J and r ∈ R. For some z ∈ J, we find
[x, y]zr−zr[x, y] = [x, y]zr−z[x, y]r+z[x, y]r−zr[x, y] = [[x, y], z]r+z[[x, y], r] = [[x, y], z]r+z[xy, r]−
z[yx, r] ∈ J. By Lemma 2.4 in [1], we have 2z[xy, r] ∈ J and 2z[yx, r] ∈ J for all x, y, z ∈ J and r ∈ R.
On combining these expressions, we obtain 2[[x, y], z]r ∈ J for all x, y, z ∈ J and r ∈ R. Again, it gives
2[[x, y], z]rs + 2s[[x, y], z]r ∈ J, where x, y, z ∈ J and r, s ∈ R. It implies that 2R[[J, J], J]R ⊆ J. Further,
if 2R[[J, J], J]R = (0) i.e. R[[J, J], J]R = (0) it forces that (R[[J, J], J])2 = (0), which contradicts the
semi-primeness of R. Hence, J contains a nonzero ideal of R. �

The following lemma is may be of independent interest.

Lemma 2.3. Let R be a ring and J be a Jordan ideal of R. Then 2R[J2, J]R ⊆ J.

Proof. It is well known that 2[x2, r] ∈ J for any x ∈ J and r ∈ R. For some y ∈ J, we replace r by yr
and get 2(x2yr − yrx2) ∈ J. That means, 2(x2y − yx2)r + 2y(x2r − rx2) ∈ J, where x, y ∈ J and r ∈ R.
Since 2y[x2, r] ∈ J, we must have 2(x2y − yx2)r ∈ J. Therefore, 2((x2y − yx2)r)s + 2s(x2y − yx2)r ∈ J
for any x, y ∈ J and r, s ∈ R. Hence, we obtain R[2J2, J]R ⊆ J. �
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Lemma 2.4. Let R be a 2-torsion prime ring. Let J * Z(R) be a Jordan ideal of R and d : R→ R be a
derivation of R. If x2d(x2) = 0 for all x ∈ J, then d = 0.

Proof. By hypothesis, we have x2(d(x)◦x) = 0 for any x ∈ J. By Lemma 2.2, J contains a nonzero ideal
I of R i.e. I ⊆ J, where 2R[[J, J], J]R = I. That gives, x2(d(x) ◦ x) = 0 for all x ∈ I. By Kharchenko’s
theory [6] of differential identities, we have the following two cases:

Case 1: If d is a Q-outer derivation, then I satisfies the polynomial identity

x2(y ◦ x) = 0,

for all x, y ∈ I. On replacing y by 2x, we have (2x2)2 = 0 for all x ∈ I. Which is a contradiction by Xu
[11].

Case 2: Suppose d is a Q-inner derivation induced by some q ∈ Q i.e d(r) = [q, r] for all r ∈ R. For
any x ∈ I, we have

x2([q, x] ◦ x) = 0.

In view of Theorem 1 in [7], Q and I satisfy same GPIs. Therefore, we have

u2([q, u] ◦ u) = 0,

for all u ∈ Q. By Theorem 2.5 and 3.5 in [8], Q and Q
⊗

C C both are prime and centrally closed. So,
we may replace R by Q or Q

⊗
C C according as C is finite or infinite. In case, Q has infinite center

C, we have u2([q, u] ◦ u) = 0 for any u ∈ Q
⊗

C C, where C stands for algebraic closure of extended
centroid C. Thus, we may assume that R is centrally closed over C (i.e. RC = R) which is either finite
or algebraically closed and

u2([q, u] ◦ u) = 0, (1)

for all u ∈ R. By Theorem 3 of Martindale [9], RC (and so R) is a primitive ring having nonzero soclef
with associated division ring D. Now, by a result of Jacobson [[10], pg. 75], R is isomorphic to a dense
ring of linear transformations of some vector spaceV over D and f contains the linear transformation
of R with finite rank. IfV is finite dimensional over D, the density of R onV implies that R � Mh(D),
where h = dimD(V). Let us suppose that dimD(V) ≥ 2, otherwise we are done.

Next, for any v ∈ V, we claim that {v, qv} is a linearly D−dependent set. If qv = 0, then there is
nothing to prove. Let qv , 0. If possible, we assume that v and qv are linearly independent over D. By
the density of R, we can find some x ∈ R such that

xv = 0, xqv = qv

The equation (1) forces that

0 = (u2([q, u] ◦ u))v = −qv,

which is a contradiction. Thus, {v, qv} must be linearly dependent over D for all v ∈ V. That means,
we can find some β ∈ D such that qv = vβ. Next, we shall show that β is independent of the choice of
v. Let us choose linearly independent u and v inV. By above process, we can find βu, βv and βu+v in D
such that

qu = uβu, qv = vβv and q(u + v) = βu+v.
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Further, uβu + vβv = (u + v)βu+v. It implies u(βu − βu+v) + v(βv − βu+v) = 0. Hence, βu = βv = βu+v, as u
and v are chosen to be linearly independent.

Now, for any r ∈ R and v ∈ V, we have qv = vβ, r(qv) = r(vβ) and q(rv) = rvβ. It implies that
[q, r]v = 0 for all v ∈ V. ButV is left faithful irreducible R−module, hence [q, r] = 0 i.e. q ∈ Z(R) i.e.
d = 0. �

Theorem 2.5. Let R be a 2-torsion free prime ring. Let J be a nonzero Jordan ideal of R and F : R→ R
be a generalized derivation of R associated with a nonzero derivation d. If F([J, J]) ∈ Z(R), then R is
commutative.

Proof. We divide the proof into the following two cases:
Case 1: If J ⊆ Z(R). With the aid of Lemma 3 of [2], R is commutative.
Case 2: If J * Z(R). Firstly, we claim that Z(R) ∩ J , (0). Let us assume that Z(R) ∩ J = (0). By our
hypothesis, F([u, v]) ∈ Z(R) for all u, v ∈ J. We replace u and v by 2u2 and 2vu2 respectively in order
to get 4F([u2, vu2]) ∈ Z(R). It is easy to see that 4F([u2, vu2]) = 4F([u2, v])u2 + 4[u2, v](d(u) ◦ u) ∈ J.
Therefore, we find 4F([u2, v]u2) = 0 for all u, v ∈ J. That gives

F([u2, v])u2 + [u2, v]d(u2) = 0 (2)

On replacing v by 2vu2 in (2), we get

F[u2, v]u4 + [u2, v]d(u2)u2 + [u2, v]u2d(u2) = 0 (3)

On combining Eq. (2) and Eq. (3), we get [u2, v]u2d(u2) = 0. Substitute v = 2[r, s]v, we get
[u2, [r, s]]Ju2d(u2) = (0). Primeness of J implies that either [u2, [r, s]] = 0 or u2d(u2) = 0. Let us
assume that u2d(u2) = 0 for all u ∈ J. It leads to a contradiction with the aid of Lemma 2.4. In the
latter case, we have [u2, [r, s]] = 0 for any u ∈ J and r, s ∈ R. Putting r = sr, we get [u2, s][r, s] = 0. It
implies that [u2, s]R[r, s] = (0). It forces that u2 ∈ Z(R). From the proof of Lemma 5 in [3], J ⊆ Z(R),
again a contradiction.

Therefore, we must have 0 , w ∈ Z(R) ∩ J. By our hypothesis, we have F([u, v]) ∈ Z(R) for
all u, v ∈ J. Replace v by 2v2w, we get F([u, 2v2])w + [u, 2v2]d(w) ∈ Z(R). Since F([u, 2v2]) and w
are in Z(R), so we find [[u, 2v2], r]d(w) = 0 for all u, v ∈ J. It implies that [[u, 2v2], r]Rd(w) = (0).
Therefore, either [[u, 2v2], r] = 0 or d(w) = 0. Let us consider [[u, 2v2], r] = 0. Put v = v + w, we get
[[u, 2vw], r] = 0, since w ∈ Z(R). It implies that [[x, y], r]w = 0 ⇒ [[x, y], r]Rw = (0). But w , 0, so
only possibility is [[x, y], r] = 0, where x, y ∈ J and r ∈ R. That is [J, J] ⊆ Z(R). Hence, J ⊆ Z(R) by
Lemma 3 of [4], which is not possible.

On other side if d(w) = 0. For some r ∈ R, we substitute 2rw in the place of u in the equation
F([u, v]) ∈ Z(R), we get F([r, v])w ∈ Z(R). It implies that F([r, v]) ∈ Z(R). Replacing y by 2sw, by the
same reasons we get F([r, s]) ∈ Z(R) for all r, s ∈ R. Let ζ(r, s) = rs − sr, a multilinear polynomial in
R. Then we have F(ζ(r, s)) ∈ Z(R) i.e. [F(ζ(r, s)), ζ(r, s)] = 0. By Theorem 2 in [5], either ζ(r, s) is
central valued or F(x) = λx for all x ∈ R and for some λ ∈ C. In case, F(x) = λx, our hypothesis yields
that λ[r, s] ∈ Z(R). Since F , 0 so λ , 0 and hence [r, s] ∈ Z(R). It implies that R is commutative. �

It is trivial that, if F is a generalized derivation of R associated with a derivation d, then so is F ± I,
where I is the identity map on R.
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Corollary 2.1. Let R be a 2-torsion free prime ring. Let J be a nonzero Jordan ideal of R and F : R→
R be a generalized derivation of R associated with a nonzero derivation d. If any one of the following:

1. F([x, y]) + [x, y] ∈ Z(R)
2. F([x, y]) − [x, y] ∈ Z(R)

holds on J, then R is commutative.

We conclude with the following remark, which shows that our main result can’t be extended to the
class of semiprime rings.

Remark 2.6. Let R1 be any noncommutative semiprime ring and S 1 be any commutative integral do-
main. Evidently, R = S 1 × R1 is a semiprime ring and J = S 1 × {0} is a nonzero Jordan ideal of R. Let
F : R1 → R1 be a generalized derivation of R1 associated with a derivation d. We define a mapping
F : R → R as (s, r) 7→ (0, F(r)) and a mapping δ : R → R as (s, r) 7→ (0, d(r)). Note that, F is a
generalized derivation of R associated with derivation δ. Now, it is easy to check that F ([J, J]) ∈ Z(R),
but R is not commutative.
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