Processing math: 86%
Review

Percutaneous Transcatheter Aortic Valve Implantation: A Review Focus on Outcomes and Safety

  • Aortic stenosis is highly prevalent in the elderly, when symptomatic, is associated with high mortality. Although its treatment is mainly surgical, cumulative evidence has demonstrated that transcatheter aortic valve implantation is an effective and safe treatment option for selected patients, especially for inoperable and high-risk patients. The aim of this review is to discuss the advances in current and emergent devices, with special focus on clinical and safety outcomes in randomized clinical trials and registries.

    Citation: Luis Ortega-Paz, Giuseppe Giacchi, Salvatore Brugaletta, Manel Sabaté. Percutaneous Transcatheter Aortic Valve Implantation: A Review Focus on Outcomes and Safety[J]. AIMS Medical Science, 2015, 2(3): 200-221. doi: 10.3934/medsci.2015.3.200

    Related Papers:

    [1] Ruifang Yang, Shilin Yang . Representations of a non-pointed Hopf algebra. AIMS Mathematics, 2021, 6(10): 10523-10539. doi: 10.3934/math.2021611
    [2] Fengxia Gao, Jialei Chen . Conjugacy classes of left ideals of Sweedler's four-dimensional algebra $ H_{4} $. AIMS Mathematics, 2022, 7(5): 7720-7727. doi: 10.3934/math.2022433
    [3] Haijun Cao, Fang Xiao . The category of affine algebraic regular monoids. AIMS Mathematics, 2022, 7(2): 2666-2679. doi: 10.3934/math.2022150
    [4] Yaguo Guo, Shilin Yang . Projective class rings of a kind of category of Yetter-Drinfeld modules. AIMS Mathematics, 2023, 8(5): 10997-11014. doi: 10.3934/math.2023557
    [5] Faiza Shujat, Faarie Alharbi, Abu Zaid Ansari . Weak $ (p, q) $-Jordan centralizer and derivation on rings and algebras. AIMS Mathematics, 2025, 10(4): 8322-8330. doi: 10.3934/math.2025383
    [6] Mingze Zhao, Huilan Li . A pair of dual Hopf algebras on permutations. AIMS Mathematics, 2021, 6(5): 5106-5123. doi: 10.3934/math.2021302
    [7] Panpan Jia, Jizhu Nan, Yongsheng Ma . Separating invariants for certain representations of the elementary Abelian $ p $-groups of rank two. AIMS Mathematics, 2024, 9(9): 25603-25618. doi: 10.3934/math.20241250
    [8] Zehra Velioǧlu, Mukaddes Balçik . On the Tame automorphisms of differential polynomial algebras. AIMS Mathematics, 2020, 5(4): 3547-3555. doi: 10.3934/math.2020230
    [9] Qining Li . Double Ore extensions of anti-angle type for Hopf algebras. AIMS Mathematics, 2022, 7(7): 12566-12586. doi: 10.3934/math.2022696
    [10] Simone Costa, Marco Pavone . Orthogonal and oriented Fano planes, triangular embeddings of $ K_7, $ and geometrical representations of the Frobenius group $ F_{21} $. AIMS Mathematics, 2024, 9(12): 35274-35292. doi: 10.3934/math.20241676
  • Aortic stenosis is highly prevalent in the elderly, when symptomatic, is associated with high mortality. Although its treatment is mainly surgical, cumulative evidence has demonstrated that transcatheter aortic valve implantation is an effective and safe treatment option for selected patients, especially for inoperable and high-risk patients. The aim of this review is to discuss the advances in current and emergent devices, with special focus on clinical and safety outcomes in randomized clinical trials and registries.


    In [12,Definition 11.2] and [18,p. 134,Theorem A], the second kind Bell polynomials $ {\rm{B}}_{n, k} $ for $ n\ge k\ge0 $ are defined by

    $ Bn,k(x1,x2,,xnk+1)=Nnk+10n!nk+1i=1i!nk+1i=1(xii!)i, $

    where $ \mathbb{N}_0 = \{0\}\cup\mathbb{N} $, the sum is taken over $ \ell = (\ell_1, \ell_2, \dotsc, \ell_{n-k+1}) $ with $ \ell_i\in\mathbb{N}_0 $ satisfying $ \sum_{i = 1}^{n-k+1}\ell_i = k $ and $ \sum_{i = 1}^{n-k+1}i\ell_i = n $. This kind of polynomials are very important in combinatorics, analysis, and the like. See the review and survey article [53] and closely related references therein.

    In [36,pp. 13–15], when studying Grothendieck's inequality and completely correlation-preserving functions, Oertel obtained the interesting identity

    $ 2nk=1(1)k(2n+k)!k!B2n,k(0,16,0,340,0,5112,,1+(1)k+12[(2nk)!!]2(2nk+2)!)=(1)n $

    for $ n\in\mathbb{N} $, where

    $ Bn,k(x1,x2,,xnk+1)=k!n!Bn,k(1!x1,2!x2,,(nk+1)!xnk+1). $ (1.1)

    In [36,p. 15], Oertel wrote that "However, already in this case we don't know a closed form expression for the numbers

    $ B2n,k(0,16,0,340,0,5112,,1+(1)k+12[(2nk)!!]2(2nk+2)!). $ (1.2)

    An even stronger problem appears in the complex case, since already a closed-form formula for the coefficients of the Taylor series of the inverse of the Haagerup function is still unknown''.

    By virtue of the relation (1.1), we see that, to find a closed-form formula for the sequence (1.2), it suffices to discover a closed-form formula for

    $ B2n,k(0,13,0,95,0,2257,,1+(1)k+12[(2nk)!!]22nk+2). $ (1.3)

    In this paper, one of our aims is to derive closed-form formulas for the sequence (1.3). The first main result can be stated as the following theorem.

    Theorem 1.1. For $ k, n\ge0 $, $ m\in\mathbb{N} $, and $ x_{m}\in\mathbb{C} $, we have

    $ B2n+1,k(0,x2,0,x4,,1+(1)k2x2nk+2)=0. $ (1.4)

    For $ k, n\in\mathbb{N} $, we have

    $ B2n,2k1(0,13,0,95,0,2257,,0,[(2n2k+1)!!]22n2k+3)=22n(2k1)![kp=1(4)p1(2k12p1)(2n+2p12p1)2p2q=0T(n+p1;q,2p2;12)k1p=1(1)p1(2k12p)(2n+2p2p)2p2q=0T(n+p1;q,2p2;1)] $

    and

    $ B2n,2k(0,13,0,95,0,2257,,[(2n2k1)!!]22n2k+1,0)=22n(2k)![kp=1(1)p1(2k2p)(2n+2p2p)2p2q=0T(n+p1;q,2p2;1)kp=1(4)p1(2k2p1)(2n+2p12p1)2p2q=0T(n+p1;q,2p2;12)], $

    where $ s(n, k) $, which can be generated by

    $ xn=nm=0s(n,m)xm, $ (1.5)

    denote the first kind Stirling numbers and

    $ T(r;q,j;ρ)=(1)q[rm=q(ρ)ms(r,m)(mq)][rm=jq(ρ)ms(r,m)(mjq)]. $ (1.6)

    In Section 2, for proving Theorem 1.1, we will establish two general expressions for power series expansions of $ (\arcsin x)^{2\ell-1} $ and $ (\arcsin x)^{2\ell} $ respectively.

    In Section 3, with the aid of general expressions for power series expansions of the functions $ (\arcsin x)^{2\ell-1} $ and $ (\arcsin x)^{2\ell} $ established in Section 2, we will prove Theorem 1.1 in details.

    In Section 4, basing on arguments in [20,p. 308] and [28,Section 2.4] and utilizing general expressions for power series expansions of $ (\arcsin x)^{2\ell-1} $ and $ (\arcsin x)^{2\ell} $ established in Section 2, we will derive series representations of generalized logsine functions which were originally introduced in [34] and have been investigating actively, deeply, and systematically by mathematicians [9,10,14,15,16,17,29,30,31,37,38,57] and physicists [3,19,20,28].

    Finally, in Section 5, we will list several remarks on our main results and related stuffs.

    To prove Theorem 1.1, we need to establish the following general expressions of the power series expansions of $ (\arcsin x)^\ell $ for $ \ell\in\mathbb{N} $.

    Theorem 2.1. For $ \ell\in\mathbb{N} $ and $ |x| < 1 $, the functions $ (\arcsin x)^\ell $ can be expanded into power series

    $ (arcsinx)21=(4)1n=04n(2n)![22q=0T(n+1;q,22;12)]x2n+21(2n+2121) $ (2.1)

    or

    $ (arcsinx)2=(1)1n=04n(2n)![22q=0T(n+1;q,22;1)]x2n+2(2n+22), $ (2.2)

    where $ s(n, k) $ denotes the first kind Stirling numbers generated in (1.5) and $ T(r; q, j;\rho) $ is defined by (1.6).

    Proof. In [4,pp. 262–263,Proposition 15], [7,p. 3], [20,p. 308], and [28,pp. 49–50], it was stated that the generating expression for the series expansion of $ (\arcsin x)^n $ with $ n\in\mathbb{N} $ is

    $ exp(tarcsinx)==0b(t)x!, $

    where $ b_0(t) = 1 $, $ b_1(t) = t $, and

    $ b2(t)=1k=0[t2+(2k)2],b2+1(t)=tk=1[t2+(2k1)2] $

    for $ \ell\in\mathbb{N} $. This means that, when writing

    $ b(t)=k=0β,ktk,0, $

    where $ \beta_{0, 0} = 1 $, $ \beta_{2\ell, 0} = 0 $, $ \beta_{2\ell, 2k+1} = 0 $, and $ \beta_{2\ell-1, 2k} = 0 $ for $ k\ge0 $ and $ \ell\ge1 $, we have

    $ =0(arcsinx)t!==0x!k=0β,ktk=k=0=kx!β,ktk==0[m=βm,xmm!]t. $

    Equating coefficients of $ t^\ell $ gives

    $ (arcsinx)=!m=βm,xmm!=!n=0βn+,xn+(n+)!,N. $ (2.3)

    It is not difficult to see that

    $ b2(t)=41t2(1it2)1(1+it2)1andb2+1(t)=4t(12it2)(12+it2), $

    where $ i = \sqrt{-1}\, $ is the imaginary unit and

    $ (z)n=n1=0(z+)={z(z+1)(z+n1),n11,n=0 $

    is called the rising factorial of $ z\in\mathbb{C} $, while

    $ zn=n1=0(z)={z(z1)(zn+1),n11,n=0 $ (2.4)

    is called the falling factorial of $ z\in\mathbb{C} $. Making use of the relation

    $ (z)n=(1)nznorzn=(1)n(z)n $

    in [52,p. 167], we acquire

    $ b2(t)=41t2it211it211andb2+1(t)=4tit212it212. $

    Utilizing the relation (1.5) in [59,p. 19,(1.26)], we obtain

    $ b2(t)=41t21m=0s(1,m)2m(it2)m1m=0(1)ms(1,m)2m(it+2)m=41t21m=0s(1,m)2mmk=0(mk)iktk(2)mk1m=0(1)ms(1,m)2mmk=0(mk)iktk2mk=41t21m=0(1)ms(1,m)mk=0(1)k2k(mk)iktk1m=0(1)ms(1,m)mk=012k(mk)iktk=41t21k=0[1m=k(1)m+ks(1,m)2k(mk)]iktk1k=0[1m=k(1)ms(1,m)2k(mk)]iktk=41t22(1)k=0kq=0[1m=q(1)m+qs(1,m)2q(mq)1m=kq(1)ms(1,m)2kq(mkq)]iktk=41t22(1)k=012kkq=0[1m=q(1)m+qs(1,m)(mq)1m=kq(1)ms(1,m)(mkq)]iktk=412(1)k=0ik2k[kq=0(1m=q(1)ms(1,m)(mq))1m=kq(1)ms(1,m)(mkq)]tk+2=412(1)k=0ik2k[kq=0T(1;q,k;1)]tk+2 $

    and

    $ b2+1(t)=4tm=0s(,m)2m(it1)mm=0(1)ms(,m)2m(it+1)m=4tm=0s(,m)2mmk=0(1)mk(mk)iktkm=0(1)ms(,m)2mmk=0(mk)iktk=4tk=0[m=k(1)ms(,m)2m(mk)](i)ktkk=0[m=k(1)ms(,m)2m(mk)]iktk=42k=0ik[kq=0(1)q(m=q(1)ms(,m)2m(mq))m=kq(1)ms(,m)2m(mkq)]tk+1=42k=0ik[kq=0T(;q,k;12)]tk+1. $

    This means that

    $ 2k=0β2,ktk=2(1)k=2β2,k+2tk+2=2(1)k=0β2,k+2tk+2=412(1)k=0ik2k[kq=0T(1;q,k;1)]tk+2 $

    and

    $ 2+1k=0β2+1,ktk=2k=1β2+1,k+1tk+1=2k=0β2+1,k+1tk+1=42k=0ik[kq=0T(;q,k;12)]tk+1. $

    Further equating coefficients of $ t^{k+2} $ and $ t^{k+1} $ respectively arrives at

    $ β2,k+2=41ik2kkq=0T(1;q,k;1)andβ2+1,k+1=4ikkq=0T(;q,k;12) $

    for $ k\ge0 $.

    Replacing $ \ell $ by $ 2\ell-1 $ for $ \ell\in\mathbb{N} $ in (2.3) leads to

    $ (arcsinx)21=(21)!n=0βn+21,21xn+21(n+21)!=(21)!n=0β2n+21,21x2n+21(2n+21)!=(21)!n=0[4n+1i2(1)2(1)q=0T(n+1;q,22;12)]x2n+21(2n+21)!=(1)141(21)!n=0[4n2(1)q=0T(n+1;q,22;12)]x2n+21(2n+21)!=(4)1n=04n(2n)![22q=0T(n+1;q,22;12)]x2n+21(2n+2121). $

    Replacing $ \ell $ by $ 2\ell $ for $ \ell\in\mathbb{N} $ in (2.3) leads to

    $ (arcsinx)2=(2)!n=0βn+2,2xn+2(n+2)!=(2)!n=0β2n+2,2x2n+2(2n+2)!=(1)1(2)!n=0[4n2(1)q=0T(n+1;q,22;1)]x2n+2(2n+2)!=(1)1n=04n(2n)![22q=0T(n+1;q,22;1)]x2n+2(2n+22). $

    The proof of Theorem 2.1 is complete.

    We now start out to prove Theorem 1.1.

    In the last line of [18,p. 133], there exists the formula

    $ 1k!(m=1xmtmm!)k=n=kBn,k(x1,x2,,xnk+1)tnn! $ (3.1)

    for $ k\ge0 $. When taking $ x_{2m-1} = 0 $ for $ m\in\mathbb{N} $, the left hand side of the formula (3.1) is even in $ t\in(-\infty, \infty) $ for all $ k\ge0 $. Therefore, the formula (1.4) is valid.

    Ones know that the power series expansion

    $ arcsint==0[(21)!!]2(2+1)!t2+1,|t|<1 $ (3.2)

    is valid, where $ (-1)!! = 1 $. This implies that

    $ B2n,k(0,13,0,95,0,2257,,1+(1)k+12[(2nk)!!]22nk+2)=B2n,k((arcsint)|t=02,(arcsint)|t=03,(arcsint)(4)|t=04,,(arcsint)(2nk+2)|t=02nk+2). $

    Employing the formula

    $ Bn,k(x22,x33,,xnk+2nk+2)=n!(n+k)!Bn+k,k(0,x2,x3,,xn+1) $

    in [18,p. 136], we derive

    $ B2n,k(0,13,0,95,0,2257,,1+(1)k+12[(2nk)!!]22nk+2)=(2n)!(2n+k)!B2n+k,k(0,(arcsint)|t=0,(arcsint)|t=0,,(arcsint)(2n+1)|t=0). $

    Making use of the formula (3.1) yields

    $ n=0Bn+k,k(x1,x2,,xn+1)k!n!(n+k)!tn+kn!=(m=1xmtmm!)k,n=0Bn+k,k(x1,x2,,xn+1)(n+kk)tn+kn!=(m=1xmtmm!)k,Bn+k,k(x1,x2,,xn+1)=(n+kk)limt0dndtn[m=0xm+1tm(m+1)!]k,B2n+k,k(x1,x2,,x2n+1)=(2n+kk)limt0d2ndt2n[m=0xm+1tm(m+1)!]k. $

    Setting $ x_1 = 0 $ and $ x_m = (\arcsin t)^{(m)}|_{t = 0} $ for $ m\ge2 $ gives

    $ d2ndt2n[m=0xm+1tm(m+1)!]k=d2ndt2n[1tm=2(arcsint)(m)|t=0tmm!]k=d2ndt2n(arcsinttt)k=d2ndt2nkp=0(1)kp(kp)(arcsintt)p=kp=1(1)kp(kp)d2ndt2n(arcsintt)p. $

    Accordingly, we obtain

    $ limt0d2ndt2n[1tm=2(arcsint)(m)|t=0tmm!]2k1=2k1p=1(1)2kp1(2k1p)limt0d2ndt2n(arcsintt)p=kp=1(2k12p1)limt0d2ndt2n(arcsintt)2p1k1p=1(2k12p)limt0d2ndt2n(arcsintt)2p $

    and

    $ limt0d2ndt2n[1tm=2(arcsint)(m)|t=0tmm!]2k=2kp=1(1)2kp(2kp)limt0d2ndt2n(arcsintt)p=kp=1(2k2p)limt0d2ndt2n(arcsintt)2pkp=1(2k2p1)limt0d2ndt2n(arcsintt)2p1. $

    From the power series expansions (2.1) and (2.2) in Theorem 2.1, it follows that

    $ limt0d2ndt2n(arcsintt)2p1=(1)p14p1(2p1)!×limt0d2ndt2nj=0[4j2p2q=0T(j+p1;q,2p2;12)]t2j(2j+2p1)!=(1)p14n+p1(2n+2p12n)2p2q=0T(n+p1;q,2p2;12) $

    and

    $ limt0d2ndt2n(arcsintt)2p=(1)p1(2p)!limt0d2ndt2nj=0[4j2p2q=0T(j+p1;q,2p2;1)]t2j(2j+2p)!=(1)p14n(2n+2p2n)2p2q=0T(n+p1;q,2p2;1). $

    Therefore, we arrive at

    $ limt0d2ndt2n[1tm=2(arcsint)(m)|t=0tmm!]2k1=4nkp=1(4)p1(2k12p1)(2n+2p12p1)2p2q=0T(n+p1;q,2p2;12)4nk1p=1(1)p1(2k12p)(2n+2p2p)2p2q=0T(n+p1;q,2p2;1) $

    and

    $ limt0d2ndt2n[1tm=2(arcsint)(m)|t=0tmm!]2k=4nkp=1(1)p1(2k2p)(2n+2p2p)2p2q=0T(n+p1;q,2p2;1)4nkp=1(4)p1(2k2p1)(2n+2p12p1)2p2q=0T(n+p1;q,2p2;12). $

    Consequently, we acquire

    $ B2n,2k1(0,13,0,95,0,2257,,0,[(2n2k+1)!!]22n2k+3)=(2n)!(2n+2k1)!B2n+2k1,2k1(0,(arcsint)|t=0,(arcsint)|t=0,,(arcsint)(2n+1)|t=0)=(2n)!(2n+2k1)!(2n+2k12k1)limt0d2ndt2n(1tm=2(arcsint)(m)|t=0tmm!)2k1=1(2k1)![4nkp=1(4)p1(2k12p1)(2n+2p12p1)2p2q=0T(n+p1;q,2p2;12)4nk1p=0(1)p1(2k12p)(2n+2p2p)2p2q=0T(n+p1;q,2p2;1)] $

    and

    $ B2n,2k(0,13,0,95,0,2257,,[(2n2k1)!!]22n2k+1,0)=(2n)!(2n+2k)!B2n+2k,2k(0,(arcsint)|t=0,(arcsint)|t=0,,(arcsint)(2n+1)|t=0)=(2n)!(2n+2k)!(2n+2k2k)limt0d2ndt2n(1tm=2(arcsint)(m)|t=0tmm!)2k=1(2k)![4nkp=1(1)p1(2k2p)(2n+2p2p)2p2q=0T(n+p1;q,2p2;1)4nkp=1(4)p1(2k2p1)(2n+2p12p1)2p2q=0T(n+p1;q,2p2;12)]. $

    The proof of Theorem 1.1 is complete.

    The logsine function

    $ Lsj(θ)=θ0(ln|2sinx2|)j1dx $

    and generalized logsine function

    $ Ls()j(θ)=θ0x(ln|2sinx2|)j1dx $

    were introduced originally in [34,pp. 191–192], where $ \ell, j $ are integers, $ j\ge\ell+1\ge1 $, and $ \theta $ is an arbitrary real number. There have been many papers such as [3,9,10,14,15,16,17,19,20,28,29,30,31,37,38,57] devoted to investigation and applications of the (generalized) logsine functions in mathematics, physics, engineering, and other mathematical sciences.

    Theorem 4.1. Let $ \langle z\rangle_n $ for $ z\in\mathbb{C} $ and $ n\in\{0\}\cup\mathbb{N} $ denote the falling factorial defined by (2.4) and let $ T(r; q, j;\rho) $ be defined by (1.6). In the region $ 0 < \theta\le\pi $ and for $ j, \ell\in\mathbb{N} $, generalized logsine functions $ {\rm{Ls}}_j^{(\ell)}(\theta) $ have the following series representations:

    1. for $ j\ge2\ell+1\ge3 $,

    $ Ls(21)j(θ)=θ22[ln(2sinθ2)]j2(1)(j2)(21)!(ln2)j1(2sinθ2ln2)2×n=0(2sinθ2)2n(2n+2)![22q=0T(n+1;q,22;1)]×[j21α=0(lnsinθ2ln2)α(j21α)αk=0(1)kαk(2n+2)k+1(lnsinθ2)k]; $ (4.1)

    2. for $ j\ge2\ell+2\ge4 $,

    $ Ls(2)j(θ)=θ2+12+1[ln(2sinθ2)]j21+(1)(j21)(2)!(ln2)j12(4sinθ2ln2)2+1×n=0[(2sinθ2)2n(2n+2+1)!2q=0T(n+;q,2;12)]×[j22α=0(j22α)(lnsinθ2ln2)ααk=0(1)kαk(2n+2+1)k+1(lnsinθ2)k]; $ (4.2)

    3. for $ j\ge2\ell-1\ge1 $,

    $ Ls(22)j(θ)=(1)243(22)!(ln2)j(sinθ2ln2)21×n=0[(2sinθ2)2n(2n+22)!22q=0T(n+1;q,22;12)]×j2+1α=0(j2+1α)(lnsinθ2ln2)ααk=0(1)kαk(2n+21)k+1(lnsinθ2)k; $ (4.3)

    4. for $ j\ge2\ell-1\ge1 $,

    $ Ls(21)j(θ)=(1)(21)!(ln2)j(2sinθ2ln2)2×n=0[(2sinθ2)2n(2n+21)!22q=0T(n+1;q,22;1)]×j2α=0(j2α)(lnsinθ2ln2)ααk=0(1)kαk(2n+2)k+1(lnsinθ2)k. $ (4.4)

    Proof. In [28,p. 49,Section 2.4], it was obtained that

    $ Ls(k)j(θ)=θk+1k+1[ln(2sinθ2)]jk1+2k+1(jk1)k+1sin(θ/2)0(arcsinx)k+1lnjk2(2x)xdx $ (4.5)

    for $ 0 < \theta\le\pi $ and $ j-k-2\ge0 $. Making use of Theorem 2.1 and the formula

    $ xnlnmxdx=xn+1mk=0(1)kmklnmkx(n+1)k+1,m,n0 $ (4.6)

    in [22,p. 238,2.722], we acquire

    $ sin(θ/2)0(arcsinx)2lnj21(2x)xdx=(1)1(2)!n=04n(2n+2)![22q=0T(n+1;q,22;1)]sin(θ/2)0x2n+21lnj21(2x)dx=(1)1(2)!n=04n(2n+2)![22q=0T(n+1;q,22;1)]×[sin(θ/2)0x2n+21(ln2+lnx)j21dx]=(1)1(2)!n=04n(2n+2)![22q=0T(n+1;q,22;1)]×[j21α=0(j21α)(ln2)j2α1sin(θ/2)0x2n+21(lnx)αdx]=(1)1(2)!n=04n(2n+2)![22q=0T(n+1;q,22;1)]×[j21α=0(j21α)(ln2)j2α1(sinθ2)2n+2αk=0(1)kαk(2n+2)k+1(lnsinθ2)αk]=(1)1(2)!(ln2)j21(sinθ2)2n=04n(2n+2)!(sinθ2)2n[22q=0T(n+1;q,22;1)]×[j21α=0(lnsinθ2ln2)α(j21α)αk=0(1)kαk(2n+2)k+1(lnsinθ2)k] $

    for $ j\ge2\ell+1\ge3 $. Substituting this result into (4.5) for $ k = 2\ell-1 $ yields (4.1).

    Similarly, by virtue of Theorem 2.1 and the formula (4.6), we also have

    $ sin(θ/2)0(arcsinx)2+1lnj22(2x)xdx=(1)4(2+1)!n=0[4n(2n+2+1)!2q=0T(n+;q,2;12)]sin(θ/2)0x2n+2lnj22(2x)dx=(1)4(2+1)!n=0[4n(2n+2+1)!2q=0T(n+;q,2;12)]×j22α=0(j22α)(ln2)j2α2sin(θ/2)0x2n+2(lnx)αdx=(1)4(2+1)!n=0[4n(2n+2+1)!2q=0T(n+;q,2;12)]×j22α=0(j22α)(ln2)j2α2(sinθ2)2n+2+1αk=0(1)kαk(lnsinθ2)αk(2n+2+1)k+1=(1)4(2+1)!(sinθ2)2+1(ln2)j22n=0[4n(2n+2+1)!(sinθ2)2n2q=0T(n+;q,2;12)]×[j22α=0(j22α)(lnsinθ2ln2)ααk=0(1)kαk(2n+2+1)k+1(lnsinθ2)k] $

    for $ \ell\in\mathbb{N} $ and $ j\ge2(\ell+1)\ge4 $. Substituting this result into (4.5) for $ k = 2\ell $ yields (4.2).

    In [20,p. 308], it was derived that

    $ Ls(k)j(θ)=2k+1sin(θ/2)0(arcsinx)k1x2lnjk1(2x)dx $ (4.7)

    for $ 0 < \theta\le\pi $ and $ j\ge k+1\ge1 $. Differentiating with respect to $ x $ on both sides of the formulas (2.1) and (2.2) in Theorem 2.1 results in

    $ (arcsinx)221x2=(1)141(22)!n=0[4n22q=0T(n+1;q,22;12)]x2n+22(2n+22)! $ (4.8)

    and

    $ (arcsinx)211x2=(1)1(21)!n=0[4n22q=0T(n+;q,2;1)]x2n+21(2n+21)! $ (4.9)

    for $ \ell\in\mathbb{N} $. Substituting the power series expansions (4.8) and (4.9) into (4.7) and employing the indefinite integral (4.6) respectively reveal

    $ Ls(22)j(θ)=221sin(θ/2)0(arcsinx)221x2lnj2+1(2x)dx=(1)243(22)!n=0[4n(2n+22)!22q=0T(n+1;q,22;12)]×sin(θ/2)0x2n+22(ln2+lnx)j2+1dx=(1)243(22)!n=0[4n(2n+22)!22q=0T(n+1;q,22;12)]×j2+1α=0(j2+1α)(ln2)j2α+1sin(θ/2)0x2n+22(lnx)αdx=(1)243(22)!(ln2)j(sinθ2ln2)21n=0[4n(2n+22)!(sinθ2)2n×22q=0T(n+1;q,22;12)]×j2+1α=0(j2+1α)(lnsinθ2ln2)ααk=0(1)kαk(2n+21)k+1(lnsinθ2)k $

    for $ j\ge2\ell-1\ge1 $ and

    $ Ls(21)j(θ)=22sin(θ/2)0(arcsinx)211x2lnj2(2x)dx=(1)22(21)!n=0[4n(2n+21)!22q=0T(n+1;q,22;1)]×sin(θ/2)0x2n+21(ln2+lnx)j2dx=(1)22(21)!n=0[4n(2n+21)!22q=0T(n+1;q,22;1)]×j2α=0(j2α)(ln2)j2αsin(θ/2)0x2n+21(lnx)αdx=(1)(21)!(ln2)j(2sinθ2ln2)2n=0[(2sinθ2)2n(2n+21)!22q=0T(n+1;q,22;1)]×j2α=0(j2α)(lnsinθ2ln2)ααk=0(1)kαk(2n+2)k+1(lnsinθ2)k $

    for $ j\ge2\ell\ge1 $. The series representations (4.3) and (4.4) are thus proved. The proof of Theorem 4.1 is complete.

    Finally, we list several remarks on our main results and related stuffs.

    Remark 5.1. For $ n\ge k\ge1 $, the first kind Stirling numbers $ s(n, k) $ can be explicitly computed by

    $ |s(n+1,k+1)|=n!n1=k11112=k112k21k1=21k1k11k=11k. $ (5.1)

    The formula (5.1) was derived in [41,Corollary 2.3] and can be reformulated as

    $ |s(n+1,k+1)|n!=nm=k|s(m,k)|m! $

    for $ n\ge k\ge1 $. From the equation (1.5), by convention, we assume $ s(n, k) = 0 $ for $ n < k $ and $ k, n < 0 $. In recent years, the first kind Stirling numbers $ s(n, k) $ have been investigated in [39,40,41,42,45] and closely related references therein.

    Remark 5.2. For $ |x| < 1 $, we have the following series expansions of $ \arcsin x $ and its powers.

    1. The series expansion (3.2) of $ \arcsin x $ can be rewritten as

    $ arcsinxx=1!n=0[(2n1)!!]2x2n(2n+1)!, $ (5.2)

    where $ (-1)!! = 1 $. Various forms of (5.2) can be found in [1,4.4.40] and [2,p. 121,6.41.1].

    2. The series expansion of $ (\arcsin x)^2 $ can be rearranged as

    $ (arcsinxx)2=2!n=0[(2n)!!]2x2n(2n+2)!. $ (5.3)

    The variants of (5.3) can be found in [2,p. 122,6.42.1], [4,pp. 262–263,Proposition 15], [5,pp. 50–51 and p. 287], [6,p. 384], [7,p. 2,(2.1)], [13,Lemma 2], [20,p. 308], [21,pp. 88-90], [22,p. 61,1.645], [32,p. 1011], [33,p. 453], [47,Section 6.3], [58], [60,p. 59,(2.56)], or [62,p. 676,(2.2)]. It is clear that the series expansion (5.3) and its equivalent forms have been rediscovered repeatedly. For more information on the history, dated back to 1899 or earlier, of the series expansion (5.3) and its equivalent forms, see [7,p. 2] and [32,p. 1011].

    3. The series expansion of $ (\arcsin x)^3 $ can be reformulated as

    $ (arcsinxx)3=3!n=0[(2n+1)!!]2[nk=01(2k+1)2]x2n(2n+3)!. $ (5.4)

    Different variants of (5.4) can be found in [2,p. 122,6.42.2], [4,pp. 262–263,Proposition 15], [11,p. 188,Example 1], [20,p. 308], [21,pp. 88–90], [22,p. 61,1.645], or [27,pp. 154–155,(832)].

    4. The series expansion of $ (\arcsin x)^4 $ can be restated as

    $ (arcsinxx)4=4!n=0[(2n+2)!!]2[nk=01(2k+2)2]x2n(2n+4)!. $ (5.5)

    There exist three variants of (5.5) in [4,pp. 262–263,Proposition 15], [7,p. 3,(2.2)], and [20,p. 309].

    5. Basing on the formula (2.21) in [28,p. 50], we concretely obtain

    $ (arcsinxx)5=5!2n=0[(2n+3)!!]2[(n+1k=01(2k+1)2)2n+1k=01(2k+1)4]x2n(2n+5)!. $ (5.6)

    6. In [7], the special series expansions

    $ (arcsinx2)2=12n=1x2n(2nn)n2,(arcsinx2)4=32n=1(n1m=11m2)x2n(2nn)n2,(arcsinx2)6=454n=1(n1m=11m2m1=112)x2n(2nn)n2,(arcsinx2)8=3152n=1(n1m=11m2m1=1121p=11p2)x2n(2nn)n2 $

    were listed. In general, it was obtained in [7,pp. 1–2] that

    $ (arcsinx2)2=(2)!n=1H(n)x2n(2nn)n2,N $ (5.7)

    and

    $ (arcsinx2)2+1=(2+1)!n=1G(n)(2nn)24n+1x2n+12n+1,{0}N, $ (5.8)

    where $ H_1(n) = \frac{1}{4} $, $ G_0(n) = 1 $,

    $ H+1(n)=14n1m1=11(2m1)2m11m2=11(2m2)2m11m=11(2m)2, $

    and

    $ G(n)=n1m1=01(2m1+1)2m11m2=01(22+1)2m11m=01(2m+1)2. $

    The convention is that the sum is zero if the starting index exceeds the finishing index.

    7. In [7,(2.9) and (4.3)], [25,p. 480,(88.2.2)], and [56,p. 124], there exist the formulas

    $ (arcsinxx)=n=0[(1k=1{nk1nk=0(2nk12nk)![(nk1nk)!]2(2nk12nk+1)122nk12nk})×(2n1)!(n1!)2(2n1+1)122n1]x2n $ (5.9)

    and

    $ (arcsinxx)=!n=0[nn1=0(2n1n1)2n1+1nn2=n1(2n22n1n2n1)2n2+2nn=n1(2n2n1nn1)2n+14n]xn. $ (5.10)

    All the power series expansions from (5.2) to (5.6) can also be deduced from Theorem 2.1.

    By the way, we notice that the quantity in the pair of bigger brackets, the coefficient of $ x^{2n} $, in the formula (5.9) has no explicit relation with $ n $. This means that there must be some misprints and typos somewhere in the formula (5.9). On 30 January 2021, Christophe Vignat (Tulane University) pointed out that $ n_0 = n $ is the missing information in the formula (5.9).

    In [28,pp. 49–50,Section 2.4], the power series expansions of $ (\arcsin x)^k $ for $ 2\le k\le 13 $ were concretely and explicitly written down in alternative forms. The main idea in the study of the power series expansions of $ (\arcsin x)^k $ for $ 2\le k\le 13 $ was related with series representations for generalized logsine functions in [28,p. 50,(2.24) and (2.25)]. The special interest is special values of generalized logsine functions defined by [28,p. 50,(2.26) and (2.27)].

    In [54,Theorem 1.4] and [55,Theorem 2.1], the $ n $th derivative of $ \arcsin x $ was explicitly computed.

    In [43,44], three series expansions (5.2), (5.3), (5.4) and their first derivatives were used to derive known and new combinatorial identities and others.

    Because coefficients of $ x^{2n+2\ell-1} $ and $ x^{2n+2\ell} $ in (2.1) and (2.2) contain three times sums, coefficients of $ x^{2n} $ and $ x^{2n+1} $ in (5.7) and (5.8) contain $ \ell $ times sums, coefficients of $ x^{2n} $ in (5.9) contain $ \ell-1 $ times sums, and coefficients of $ x^n $ in (5.10) contain $ \ell $ times sums, we conclude that the series expansions (2.1) and (2.2) are more elegant, more operable, more computable, and more applicable.

    Remark 5.3. Two expressions (2.1) and (2.2) in Theorem 2.1 for series expansions of $ (\arcsin x)^{2\ell-1} $ and $ (\arcsin x)^{2\ell} $ are very close and similar to, but different from, each other. Is there a unified expression for series expansions of $ (\arcsin x)^{2\ell-1} $ and $ (\arcsin x)^{2\ell} $? If yes, two closed-form formulas for $ {\rm{B}}_{2n, k} $ in Theorem 1.1 would also be unified. We believe that the formula

    $ exp(2aarcsinx2)=n=0(ia)n/2(ia+1)n/2(ix)nn! $ (5.11)

    mentioned in [7,p. 3,(2.7)] and collected in [25,p. 210,(10.49.33)] would be useful for unifying two expressions (2.1) and (2.2) in Theorem 2.1, where extended Pochhammer symbols

    $ (ia)n/2=Γ(ia+n2)Γ(ia)and(ia+1)n/2=Γ(ia+1n2)Γ(ia+1) $ (5.12)

    were defined in [25,p. 5,Section 2.2.3], and the Euler gamma function $ \Gamma(z) $ is defined [59,Chapter 3] by

    $ Γ(z)=limnn!nznk=0(z+k),zC{0,1,2,}. $

    What are closed forms and why do we care closed forms? Please read the paper [8].

    Remark 5.4. In [2,p. 122,6.42], [27,pp. 154–155,(834)], [33,p. 452,Theorem], and [47,Section 6.3,Theorem 21,Sections 8 and 9], it was proved or collected that

    $ \begin{equation} \frac{\arcsin x}{\sqrt{1-x^2}\,} = \sum\limits_{n = 0}^{\infty}2^{2n}(n!)^2\frac{x^{2n+1}}{(2n+1)!}, \quad |x|\le1. \end{equation} $ (5.13)

    In [6,p. 385], [47,Theorem 24], and [61,p. 174,(10)], it was proved that

    $ \begin{equation} \sum\limits_{n = 1}^{\infty}\frac{(2x)^{2n}}{\binom{2n}{n}} = \frac{x^2}{1-x^2}+\frac{x\arcsin x}{\bigl(1-x^2\bigr)^{3/2}}, \quad |x| < 1. \end{equation} $ (5.14)

    These series expansions (5.13) and (5.14) can be derived directly from the series expansion for $ (\arcsin x)^2 $ and are a special case of (4.9) for $ \ell = 1 $.

    Remark 5.5. The series expansion of the function $ \sqrt{1-x^2}\, \arcsin x $ was listed in [2,p. 122,6.42.4] which can be corrected and reformulated as

    $ \begin{equation} \sqrt{1-x^2}\,\arcsin x = x-1!\sum\limits_{n = 1}^{\infty}[(2n-2)!!]^2(2n)\frac{x^{2n+1}}{(2n+1)!}, \quad |x|\le1. \end{equation} $ (5.15)

    Basing on the relation

    $ \begin{equation*} \bigl(1-x^2\bigr)\bigl[(\arcsin x)^\ell\bigr]' = \ell\sqrt{1-x^2}\,(\arcsin x)^{\ell-1} \end{equation*} $

    and utilizing series expansions of $ (\arcsin x)^3 $ and $ (\arcsin x)^4 $, after simple operations, we can readily derive

    $ \begin{equation} \sqrt{1-x^2}\,(\arcsin x)^2 = x^2-2!\sum\limits_{n = 1}^{\infty}[(2n-1)!!]^2\Biggl[(2n+1) \sum\limits_{k = 0}^{n-1}\frac{1}{(2k+1)^2}-1\Biggr]\frac{x^{2n+2}}{(2n+2)!} \end{equation} $ (5.16)

    and

    $ \begin{equation} \sqrt{1-x^2}\,(\arcsin x)^3 = x^3-3!\sum\limits_{n = 1}^{\infty}[(2n)!!]^2 \Biggl[(2n+2)\sum\limits_{k = 0}^{n-1} \frac{1}{(2k+2)^2}-1\Biggr]\frac{x^{2n+3}}{(2n+3)!}. \end{equation} $ (5.17)

    From (4.8) and (4.9), we can generalize the series expansions (5.15), (5.16), and (5.17) as

    $ \begin{equation} \begin{aligned} \sqrt{1-x^2}\,(\arcsin x)^{2\ell-2} & = x^{2\ell-2}+(-1)^{\ell-1}4^{\ell-1}(2\ell-2)! \\ &\quad\times\sum\limits_{n = 1}^{\infty}[A(\ell,n)-(2n+2\ell-2)(2n+2\ell-3)A(\ell,n-1)] \frac{x^{2n+2\ell-2}}{(2n+2\ell-2)!} \end{aligned} \end{equation} $ (5.18)

    and

    $ \begin{equation} \begin{aligned} \sqrt{1-x^2}\,(\arcsin x)^{2\ell-1} & = x^{2\ell-1}+(-1)^{\ell-1}(2\ell-1)!\\ &\quad\times\sum\limits_{n = 1}^{\infty}[B(\ell,n)-(2n+2\ell-1)(2n+2\ell-2)B(\ell,n-1)]\frac{x^{2n+2\ell-1}}{(2n+2\ell-1)!} \end{aligned} \end{equation} $ (5.19)

    for $ \ell\in\mathbb{N} $, where

    $ \begin{align*} A(\ell,n)& = 4^{n}\sum\limits_{q = 0}^{2\ell-2}T\biggl(n+\ell-1;q,2\ell-2;\frac12\biggr),\\ B(\ell,n)& = 4^{n} \sum\limits_{q = 0}^{2\ell-2} T(n+\ell-1;q,2\ell-2;1), \end{align*} $

    and $ T(r; q, j;\rho) $ is defined by (1.6). Considering both coefficients of $ x^{2\ell-2} $ and $ x^{2\ell-1} $ in the power series expansions (5.18) and (5.19) must be $ 1 $, we acquire two combinatorial identities

    $ \begin{equation*} \sum\limits_{q = 0}^{2\ell}T\biggl(\ell;q,2\ell;\frac12\biggr) = \frac{(-1)^{\ell}}{4^{\ell}} \quad{\rm{and}}\quad \sum\limits_{q = 0}^{2\ell} T(\ell;q,2\ell;1) = (-1)^{\ell} \end{equation*} $

    for $ \ell\in\{0\}\cup\mathbb{N} $, where $ T(r; q, j;\rho) $ is defined by (1.6).

    Remark 5.6. Making use of Theorem 1.1, we readily obtain the first several values of the sequence (1.3) in Tables 1 and 2.

    Table 1.  The sequence $ {\rm{B}}_{2n, 2k-1} $ in (1.3) for $ 1\le n, k\le8 $.
    $ {\rm{B}}_{2n, 2k-1} $ $ k=1 $ $ k=2 $ $ k=3 $ $ k=4 $ $ k=5 $ $ k=6 $ $ k=7 $ $ k=8 $
    $ n=1 $ $ \frac{1}{3} $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=2 $ $ \frac{9}{5} $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=3 $ $ \frac{225}{7} $ $ \frac{5}{9} $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=4 $ $ 1225 $ $ 42 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=5 $ $ \frac{893025}{11} $ $ 3951 $ $ \frac{35}{9} $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=6 $ $ \frac{108056025}{13} $ $ \frac{2515524}{5} $ $ 1155 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=7 $ $ 1217431215 $ $ 85621185 $ $ 314314 $ $ \frac{5005}{81} $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=8 $ $ \frac{4108830350625}{17} $ $ 18974980350 $ $ \frac{284770486}{3} $ $ \frac{140140}{3} $ $ 0 $ $ 0 $ $ 0 $ $ 0 $

     | Show Table
    DownLoad: CSV
    Table 2.  The sequence $ {\rm{B}}_{2n, 2k} $ in (1.3) for $ 1\le n, k \le 8 $.
    $ {\rm{B}}_{2n, 2k} $ $ k=1 $ $ k=2 $ $ k=3 $ $ k=4 $ $ k=5 $ $ k=6 $ $ k=7 $ $ k=8 $
    $ n=1 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=2 $ $ \frac{1}{3} $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=3 $ $ 9 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=4 $ $ \frac{2067}{5} $ $ \frac{35}{27} $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=5 $ $ 30525 $ $ 210 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=6 $ $ \frac{23483925}{7} $ $ 35211 $ $ \frac{385}{27} $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=7 $ $ 516651345 $ $ \frac{106790684}{15} $ $ 7007 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ n=8 $ $ 106480673775 $ $ \frac{8891683281}{5} $ $ 2892890 $ $ \frac{25025}{81} $ $ 0 $ $ 0 $ $ 0 $ $ 0 $

     | Show Table
    DownLoad: CSV

    In the papers [46,48,49,50,51,52,53,54,55] and closely related references therein, the authors and their coauthors discovered and applied closed form expressions for many special values of the second kind Bell polynomials $ {\rm{B}}_{n, k}(x_1, x_2, \dotsc, x_{n-k+1}) $ for $ n\ge k\ge0 $.

    Remark 5.7. Taking $ \theta = \frac{\pi}{3} $ in (4.3) and (4.4) give

    $ \begin{align*} {\rm{Ls}}_j^{(2\ell-2)}\biggl(\frac{\pi}{3}\biggr) & = (-1)^{\ell}(4\ell-4)!!(\ln2)^{j-2\ell+1} \sum\limits_{n = 0}^{\infty}\Biggl[\frac{1}{{(2n+2\ell-2)!}}\sum\limits_{q = 0}^{2\ell-2} T\biggl(n+\ell-1;q,2\ell-2;\frac12\biggr)\Biggr] \\ &\quad\times\sum\limits_{\alpha = 0}^{j-2\ell+1}(-1)^{\alpha} \binom{j-2\ell+1}{\alpha} \sum\limits_{k = 0}^{\alpha}\frac{\langle\alpha\rangle_{k}} {(2n+2\ell-1)^{k+1}(\ln2)^{k}} \end{align*} $

    and

    $ \begin{align*} {\rm{Ls}}_j^{(2\ell-1)}\biggl(\frac{\pi}{3}\biggr) & = (-1)^{\ell}(2\ell-1)!(\ln2)^{j-2\ell}\sum\limits_{n = 0}^{\infty}\Biggl[\frac{1}{(2n+2\ell-1)!} \sum\limits_{q = 0}^{2\ell-2} T(n+\ell-1;q,2\ell-2;1)\Biggr]\\ &\quad\times\sum\limits_{\alpha = 0}^{j-2\ell}(-1)^{\alpha}\binom{j-2\ell}{\alpha} \sum\limits_{k = 0}^{\alpha} \frac{\langle\alpha\rangle_{k}}{(2n+2\ell)^{k+1}(\ln2)^{k}} \end{align*} $

    for $ \ell\in\mathbb{N} $, where $ \langle z\rangle_n $ for $ z\in\mathbb{C} $ and $ n\in\{0\}\cup\mathbb{N} $ denotes the falling factorial defined by (2.4) and $ T(r; q, j;\rho) $ is defined by (1.6). In [28,p. 50], it was stated that the values $ {\rm{Ls}}_j^{(\ell)}\bigl(\frac{\pi}{3}\bigr) $ have been related to special interest in the calculation of the multiloop Feynman diagrams [19,20].

    Similarly, we can also deduce series representations for special values of the logsine function $ {\rm{Ls}}_j^{(\ell)}(\theta) $ at $ \theta = \frac{\pi}{2} $, $ \frac{\pi}{4} $, $ \frac{\pi}{6} $ and $ \theta = \pi $. These special values were originally derived in [30,31,34] and also considered in [3,9,10,14,15,16,17,19,20,28,29,37,38,57] and closely related references therein.

    Remark 5.8. This paper is a revised version of electronic arXiv preprints [23,24].

    The authors thank

    1. Frank Oertel (Philosophy, Logic & Scientific Method Centre for Philosophy of Natural and Social Sciences, London School of Economics and Political Science, UK; f.oertel@email.de) for his citing the paper [53] in his electronic preprint [35]. On 10 October 2020, this citation and the Google Scholar Alerts leaded the authors to notice the numbers (1.2) in [35]. On 26 January 2021, he sent the important paper [7] to the authors and others. We communicated and discussed with each other many times.

    2. Chao-Ping Chen (Henan Polytechnic University, China; chenchaoping@sohu.com) for his asking the combinatorial identity in [43,Theorem 2.2], or the one in [44,Theorem 2.1], via Tencent QQ on 18 December 2020. Since then, we communicated and discussed with each other many times.

    3. Mikhail Yu. Kalmykov (Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Russia; kalmykov.mikhail@googlemail.com) for his noticing [43,Remark 4.2] and providing the references [19,20,28,30,31,34] on 9 and 27 January 2021. We communicated and discussed with each other many times.

    4. Li Yin (Binzhou University, China; yinli7979@163.com) for his frequent communications and helpful discussions with the authors via Tencent QQ online.

    5. Christophe Vignat (Department of Physics, Universite d'Orsay, France; Department of Mathematics, Tulane University, USA; cvignat@tulane.edu) for his sending electronic version of those pages containing the formulas (5.9), (5.11), and (5.12) in [25,56] on 30 January 2021 and for his sending electronic version of the monograph [27] on 8 February 2021.

    6. Frédéric Ouimet (California Institute of Technology, USA; ouimetfr@caltech.edu) for his photocopying by Caltech Library Services and transferring via ResearchGate those two pages containing the formulas (5.9) and (5.11) on 2 February 2021.

    7. anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

    The author Dongkyu Lim was partially supported by the National Research Foundation of Korea under Grant NRF-2021R1C1C1010902, Republic of Korea.

    All authors contributed equally to the manuscript and read and approved the final manuscript.

    The authors declare that they have no conflict of interest.

    [1] Holmes DR, Mack MJ, Kaul S, et al. (2012) ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J Am Coll Cardiol 59(13):1200-1254.
    [2] Nishimura RA, Otto CM, Bonow RO, et al. (2014) AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63(22):e57-185.
    [3] Cribier A, Eltchaninoff H, Bash A, et al. (2002) Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106(24):3006-3008.
    [4] Tchetche D, Van Mieghem NM (2014) New-generation TAVI devices: description and specifications. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 10(U):U90-U100.
    [5] Rodes-Cabau J (2012) Transcatheter aortic valve implantation: current and future approaches. Nature Rev Cardiolo 9(1):15-29.
    [6] Piazza N, Martucci G, Lachapelle K, et al. (2014) First-in-human experience with the Medtronic CoreValve Evolut R. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 9(11):1260-1263.
    [7] Binder RK, Rodes-Cabau J, Wood DA, et al. (2012) Edwards SAPIEN 3 valve. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 8 Suppl Q:Q83-87.
    [8] Ribeiro HB, Urena M, Kuck KH, et al. (2012) Edwards CENTERA valve. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 8 Suppl Q:Q79-82.
    [9] Meredith Am IT, Walters DL, Dumonteil N, et al. (2014) Transcatheter aortic valve replacement for severe symptomatic aortic stenosis using a repositionable valve system: 30-day primary endpoint results from the REPRISE II study. J Am Coll Cardiol 64 (13):1339-1348.
    [10] Holzhey D (2013) Thirty day outcomes from the multicentre European pivotal trial for transapical TAVI with a self-expanding prosthesis. EuroPCR May 21st; Paris.
    [11] The Medtronic CoreValveTM Evolut RTM CE Mark Clinical Study 2015 [cited 2015 February 27]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01876420?term=NCT01876420&rank=1.
    [12] Medtronic CoreValve Evolut R U.S. Clinical Study 2015 [cited 2015 February 27]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02207569?term=NCT02207569&rank=1.
    [13] The PARTNER II Trial: Placement of AoRTic TraNscathetER Valves [cited 2015 Febrary 2015]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01314313?term=THE+PARTNER+II+TRIAL&rank=1.
    [14] Webb J, Gerosa G, Lefevre T, et al. (2014) Multicenter evaluation of a next-generation balloon-expandable transcatheter aortic valve. J Am Coll Cardiol 64(21):2235-2243.
    [15] Binder RK, Schafer U, Kuck KH, et al. (2013) Transcatheter aortic valve replacement with a new self-expanding transcatheter heart valve and motorized delivery system. JACC Cardiovascular interventions 6(3):301-307.
    [16] Edwards CENTERA transcatheter heart valve. EuroPCR; May Paris2013.
    [17] Kempfert J, Holzhey D, Hofmann S, et al. (2014) First registry results from the newly approved ACURATE TA TAVI systemdagger. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery 25.
    [18] Grube E (2014) ACURATE neoTM & ACURATE TFTM Delivery System Clinical Program & Results. EuroPCR; May 22; Paris.
    [19] Longterm Safety and Performance of the JenaValve (JUPITER) 2015 [cited 2015 Febrary 27]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01598844?term=jenavalve&rank=1.
    [20] Willson AB, Rodes-Cabau J, Wood DA, et al. (2012) Transcatheter aortic valve replacement with the St. Jude Medical Portico valve: first-in-human experience. J Am Coll Cardiol 60(7):581-586.
    [21] Schofer J (2014) ProspectiveMulticenter Evaluation of the Direct Flow Medical® Transcatheter Aortic Valve: The DISCOVER Trial: 12-month Outcomes. EuroPCR; May 21; Paris.
    [22] A Registry to Evaluate the Direct Flow Medical Transcatheter Aortic Valve System (DISCOVER) 2015 [cited 2015 Febrary 27]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01845285?term=direct+flow+medical&rank=1.
    [23] Leon MB, Piazza N, Nikolsky E, et al. (2011) Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium. Euro Heart J 32(2):205-217.
    [24] Kappetein AP, Head SJ, Genereux P, et al. (2012) Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. Euro Heart J 33(19):2403-2418.
    [25] Kapadia SR, Leon MB, Makkar RR, et al. (2015) 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 15.
    [26] Leon MB, Smith CR, Mack M, et al. (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. The New England j med 363(17):1597-1607.
    [27] Smith CR, Leon MB, Mack MJ, et al. (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. The New England j med 364(23):2187-2198.
    [28] Kodali SK, Williams MR, Smith CR, et al. (2012) Two-year outcomes after transcatheter or surgical aortic-valve replacement. The New England j med 366(18):1686-1695.
    [29] Mack MJ, Leon MB, Smith CR, et al. (2015) 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 15.
    [30] Leon MB (2013) A Randomized Evaluation of the SAPIEN XT Transcatheter Valve System in Patients with Aortic Stenosis Who Are Not Candidates for Surgery: PARTNER II, Inoperable Cohort. ACC; March 10; San Francisco.
    [31] Webb J (2015) 1-Year outcomes from the SAPIEN 3 trial. EuroPCR; May 19th-22nd; Paris, France.
    [32] Kodali S (2015) Clinical and Echocardiographic Outcomes at 30 Days with the SAPIEN 3 TAVR System in Inoperable, High-Risk and Intermediate-Risk AS Patients. ACC; March 15; San Diego, CA.
    [33] Amat-Santos IJ, Dahou A, Webb J, et al. (2014) Comparison of hemodynamic performance of the balloon-expandable SAPIEN 3 versus SAPIEN XT transcatheter valve. The Am J Cardio 114(7):1075-1082.
    [34] Tarantini G, Mojoli M, Purita P, et al. (2014) Unravelling the (arte)fact of increased pacemaker rate with the Edwards SAPIEN 3 valve. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 19.
    [35] Schymik G, Lefevre T, Bartorelli AL, et al. (2015) European Experience With the Second-Generation Edwards SAPIEN XT Transcatheter Heart Valve in Patients With Severe Aortic Stenosis: 1-Year Outcomes From the SOURCE XT Registry. JACC Cardiovascular interventions 8(5):657-669.
    [36] Popma JJ, Adams DH, Reardon MJ, et al. (2014) Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J Am Coll Cardiol 63(19):1972-1981.
    [37] Yakubov SJ (2014) Long-Term Outcomes Using a Self-Expanding Bioprosthesis in Patients With Severe Aortic Stenosis Deemed Extreme Risk for Surgery: Two-Year Results From the CoreValve US Pivotal Trial TCT 13 Washington, DC.
    [38] Adams DH, Popma JJ, Reardon MJ, et al. (2014) Transcatheter aortic-valve replacement with a self-expanding prosthesis. The New Eng J Med 370(19):1790-1798.
    [39] Reardon MJ (2015) A Randomized Comparison of Self-expanding Transcatheter and Surgical Aortic Valve Replacement in Patients with Severe Aortic Stenosis Deemed at Increased Risk for Surgery 2-Year Outcomes. ACC 15; San Diego, CA.
    [40] Wendler O (2011) 1-year mortalityresults from combined Cohort I and Cohort II of The SOURCE Registry. EuroPCR; May; Paris, France.
    [41] Walther T (2014) 2-year outcomes from the SOURCE XT registry: transfemoral versus transapical approach. EuroPCR; May; Paris, France.
    [42] One Year Outcomes in Real World Patients Treated with Transcatheter Aortic Valve Implantation. EuroPCR; May; Paris, France2013.
    [43] Piazza N (2015) Three Year Outcomes in Real World Patients Treated with Transcatheter Aortic Valve Implantation. TVT June 5; Chicago, USA.
    [44] Holmes DR, Brennan JM, Rumsfeld JS, et al. (2015) Clinical outcomes at 1 year following transcatheter aortic valve replacement. Jama 313(10):1019-1028.
    [45] Mohr FW, Holzhey D, Mollmann H, et al. (2014) The German Aortic Valve Registry: 1-year results from 13,680 patients with aortic valve disease. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery 46(5):808-816.
    [46] Moat NE, Ludman P, de Belder MA, et al. (2011) Long-term outcomes after transcatheter aortic valve implantation in high-risk patients with severe aortic stenosis: the U.K. TAVI (United Kingdom Transcatheter Aortic Valve Implantation) Registry. J Am Coll Cardiol 58(20):2130-2138
    [47] Ludman PF, Moat N, de Belder MA, et al. (2015) Transcatheter Aortic Valve Implantation in the UK: Temporal Trends, Predictors of Outcome and 6 Year Follow Up: A Report from the UK TAVI Registry 2007 to 2012. Circulation 30.
    [48] Gilard M, Eltchaninoff H, Iung B, et al. (2012) Registry of transcatheter aortic-valve implantation in high-risk patients. The New Eng J Med 366(18):1705-1715.
    [49] Bourantas CV, Van Mieghem NM, Soliman O, et al. (2013) Transcatheter aortic valve update 2013. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 9 Suppl:S84-90.
    [50] Engager Align Study 2015 [cited 2015 Febrary 27]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02149654?term=engager+aortic+valve&rank=2.
    [51] Meredith IT (2015) 6-Month Outcomes Following Transcatheter Aortic Valve Implantation With a Novel Repositionable Self-Expanding Bioprosthesis. EuroPCR 5: 19-22.
    [52] Safety and Efficacy Study of the Medtronic CoreValve® System in the Treatment of Severe, Symptomatic Aortic Stenosis in Intermediate Risk Subjects Who Need Aortic Valve Replacement (SURTAVI). 2015 [cited 2015 Febrary 2015]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01586910?term=surtavi&rank=1.
    [53] Abdel-Wahab M, Mehilli J, Frerker C, et al. (2014) Comparison of balloon-expandable vs self-expandable valves in patients undergoing transcatheter aortic valve replacement: the CHOICE randomized clinical trial. Jama 311(15):1503-1514.
    [54] Abdel-Wahab M, Richardt G (2014) Selection of TAVI prostheses: do we really have the CHOICE? EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 10(U):U28-U34.
    [55] Abdel-Wahab M (2015) One-year outcomes after TAVI with balloon-expandable vs. self-expandable valves. EuroPCR 20; Paris.
    [56] AM ITM (2014) Repositionable Percutaneous Aortic Valve Replacement: 30-Day Outcomes in 250 High Surgical Risk Patients in the REPRISE II Extended Trial Cohort. PCR London Valve; London.
    [57] Schofer J, Colombo A, Klugmann S, et al. (2014) Prospective multicenter evaluation of the direct flow medical transcatheter aortic valve. J Am Coll Cardiol 63(8):763-768.
    [58] Colombo A (2015) 2-year data from the DISCOVER CE Mark Trial, which studied the Direct Flow Medical transcatheter aortic valve replacement system. EuroPCR; Paris, France.
    [59] TranScatheter Aortic Valve RepLacement System a US Pivotal Trial (SALUS) 2015 [cited 2015 Febrary 27]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02163850?term=direct+flow+medical&rank=3.
    [60] Primary endpoint data presented on performance and safety of the JenaValve TAVI system. 2014 [cited 2015 Febrary 27]. Available from: http://www.pcronline.com/News/Press-releases/Primary-endpoint-data-presented-on-performance-and-safety-of-the-jenavalve-tavi-system.
    [61] Thoracic S, Vahanian A, Alfieri O, et al. (2012) Joint Task Force on the Management of Valvular Heart Disease of the European Society of C, European Association for Cardio. Guidelines on the management of valvular heart disease (version 2012). European Heart J 33(19):2451-2496.
    [62] Nishimura RA, Otto CM, Bonow RO, et al. (2014) AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. The J Thoracic Cardio Surg 148(1):e1-e132.
    [63] Bax JJ, Delgado V, Bapat V, et al. (2014) Open issues in transcatheter aortic valve implantation. Part 1: patient selection and treatment strategy for transcatheter aortic valve implantation. European Heart J 35(38):2627-2638.
    [64] Watanabe Y, Hayashida K, Lefevre T, et al. (2013) Is EuroSCORE II better than EuroSCORE in predicting mortality after transcatheter aortic valve implantation? Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & Interventions 81(6):1053-1060.
    [65] Stahli BE, Tasnady H, Luscher TF, et al. (2013) Early and late mortality in patients undergoing transcatheter aortic valve implantation: comparison of the novel EuroScore II with established risk scores. Cardiolo 126(1):15-23.
    [66] Iung B, Laouenan C, Himbert D, et al. (2014) Predictive factors of early mortality after transcatheter aortic valve implantation: individual risk assessment using a simple score. Heart 100(13):1016-1023.
    [67] Mack MJ, Brennan JM, Brindis R, et al. Outcomes following transcatheter aortic valve replacement in the United States. Jama 310(19):2069-2077.
    [68] Piazza N, Kalesan B, van Mieghem N, et al. (2013) A 3-center comparison of 1-year mortality outcomes between transcatheter aortic valve implantation and surgical aortic valve replacement on the basis of propensity score matching among intermediate-risk surgical patients. JACC Cardiovascular interventions 6(5):443-451.
    [69] Lange R, Bleiziffer S, Mazzitelli D, et al. (2012) Improvements in transcatheter aortic valve implantation outcomes in lower surgical risk patients: a glimpse into the future. J Am Coll Cardiol59(3):280-287.
    [70] Wenaweser P, Stortecky S, Schwander S, et al. (2013) Clinical outcomes of patients with estimated low or intermediate surgical risk undergoing transcatheter aortic valve implantation. European Heart J 34(25):1894-1905.
    [71] Schymik G, Schrofel H, Schymik JS, et al. (2012) Acute and late outcomes of Transcatheter Aortic Valve Implantation (TAVI) for the treatment of severe symptomatic aortic stenosis in patients at high- and low-surgical risk. J Interventional Cardiolo 25(4):364-374.
    [72] D'Errigo P, Barbanti M, Ranucci M, et al. (2013) Transcatheter aortic valve implantation versus surgical aortic valve replacement for severe aortic stenosis: results from an intermediate risk propensity-matched population of the Italian OBSERVANT study. Inter J Cardiolo 167(5):1945-1952.
    [73] Thyregod HG, Steinbruchel DA, Ihlemann N, et al. (2015) Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Severe Aortic Valve Stenosis: 1-Year Results From the All-Comers NOTION Randomized Clinical Trial. J Am Coll Cardiol 65(20):2184-2194.
    [74] Athappan G, Patvardhan E, Tuzcu EM, et al. (2013) Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement: meta-analysis and systematic review of literature. J Am Coll Cardiol 61(15):1585-1595.
    [75] Leon MB (2014) Perspectives on the 5 “Hottest” Topics in TAVR for 2014. Transcatherer Valve Therapies; Vancouver, Canada.
    [76] Daneault B, Koss E, Hahn RT, et al. (2013) Efficacy and safety of postdilatation to reduce paravalvular regurgitation during balloon-expandable transcatheter aortic valve replacement. Circulation Cardiovascular interventions 6(1):85-91.
    [77] Erkapic D, De Rosa S, Kelava A, et al. (2012) Risk for permanent pacemaker after transcatheter aortic valve implantation: a comprehensive analysis of the literature. J cardiovascular electrophysiolo 23(4):391-397.
    [78] Piazza N, Onuma Y, Jesserun E, et al. (2008) Early and persistent intraventricular conduction abnormalities and requirements for pacemaking after percutaneous replacement of the aortic valve. JACC Cardiovascular interventions 1(3):310-316.
    [79] Marcel Weber J-MS, Christoph Hammerstingl, Nikos Werner, et al. (2015) Georg nickenig. permanent pacemaker implantation after tavr—predictors and impact on outcomes. Int Cardiolo Review 10(2):98–102.
    [80] Eggebrecht H, Schmermund A, Voigtlander T, et al. (2012) Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Soc Cardiolo 8(1):129-138.
    [81] Athappan G, Gajulapalli RD, Sengodan P, et al. (2014) Influence of transcatheter aortic valve replacement strategy and valve design on stroke after transcatheter aortic valve replacement: a meta-analysis and systematic review of literature. J Am Coll Cardiol 63(20):2101-2110.
    [82] Lansky AJ, Schofer J, Tchetche D, et al. (2015) A prospective randomized evaluation of the TriGuard HDH embolic DEFLECTion device during transcatheter aortic valve implantation: results from the DEFLECT III trial. European Heart J 19.
    [83] Colombo A, Michev I, Latib A (2014) Is it time to simplify the TAVI procedure? ""Make it simple but not too simple"". EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 10 Suppl U:U22-27.
    [84] Wood DA, Poulter R, Cook R, et al. (2014) TCT-701 A Multidisciplinary, Multimodality, but Minimalist (3M) approach to transfemoral transcatheter aortic valve replacement facilitates safe next day discharge home in high risk patients: 1 year follow up. J Am College Cardiolo 64(11_S).
    [85] Islas F, Almeria C, Garcia-Fernandez E, et al. (2015) Usefulness of echocardiographic criteria for transcatheter aortic valve implantation without balloon predilation: a single-center experience. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography 28(4):423-429.
    [86] Bramlage P, Strauch J, Schrofel H (2014) Balloon expandable transcatheter aortic valve implantation with or without pre-dilation of the aortic valve—rationale and design of a multicenter registry (EASE-IT). BMC cardiovascular disorders 14:160. doi: 10.1186/1471-2261-14-160
    [87] Blumenstein J, Kempfert J, Van Linden A, et al. (2013) First-in-man evaluation of the transapical APICA ASC access and closure device: the initial 10 patients. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery 44(6):1057-1062
    [88] Khawaja MZ, Wang D, Pocock S, et al. (2014) The percutaneous coronary intervention prior to transcatheter aortic valve implantation (ACTIVATION) trial: study protocol for a randomized controlled trial. Trials 15:300.
    [89] Aspirin Versus Aspirin + ClopidogRel Following Transcatheter Aortic Valve Implantation: the ARTE Trial 2015 [cited 2015 Febrary 27]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01559298?term=arte+trial&rank=1.
    [90] Tuzcu EM (2014) Transcatheter Aortic Valve in Valve Replacement for Degenerative Aortic Bioprosthesis: Initial Results from the STS/ACC Transcatheter Valve Therapy Registry. ACC; Washington, DC.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(12001) PDF downloads(1746) Cited by(3)

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog