Processing math: 100%
Research article Special Issues

Application of Digital Imaging for Cytopathology under Conditions of Georgia

  • Received: 14 December 2014 Accepted: 10 August 2015 Published: 15 August 2015
  • Digital imaging in cytopathology can be defined as a series of procedures, those contributing to the quality of the displayed on the computer monitor final image. The procedures include sample preparation and staining, optical image formation by the microscope and afterwards the digital image sampling by the camera sensor; which means digital image post-processing and compression, transmission across the network and display on the monitor. A large amount of data about digital imaging exist. However, there are existing the problems with standardization and understanding of the digital imaging complete process. The field of digital imaging is rapidly evolving. The new models and protocols of the digital imaging are developed around the world, but in Georgia this field is still at evolving stages and revolves around static telecytology. It has been revealed, that the application of easy available and adaptable technology together with the improvement of infrastructure conditions is the essential basis for digital imaging. This tool is very useful for implementation of second opinion consultations on difficult cases. Digital imaging significantly increases knowledge exchange and thereby ensured a better medical service. The article aims description of digital imaging application for cytopathology under conditions of Georgia.

    Citation: Ekaterina Kldiashvili, Archil Burduli, Gocha Ghortlishvili. Application of Digital Imaging for Cytopathology under Conditions of Georgia[J]. AIMS Medical Science, 2015, 2(3): 186-199. doi: 10.3934/medsci.2015.3.186

    Related Papers:

    [1] Mohammed Aldandani, Omar Naifar, Abdellatif Ben Makhlouf . Practical stability for nonlinear systems with generalized conformable derivative. AIMS Mathematics, 2023, 8(7): 15618-15632. doi: 10.3934/math.2023797
    [2] Yuanlin Ding . Existence and stability analysis of solutions for periodic conformable differential systems with non-instantaneous impulses. AIMS Mathematics, 2025, 10(2): 4040-4066. doi: 10.3934/math.2025188
    [3] Muhammad Bilal, Javed Iqbal, Ikram Ullah, Aditi Sharma, Hasim Khan, Sunil Kumar Sharma . Novel optical soliton solutions for the generalized integrable (2+1)- dimensional nonlinear Schrödinger system with conformable derivative. AIMS Mathematics, 2025, 10(5): 10943-10975. doi: 10.3934/math.2025497
    [4] Xuelian Jin . Exponential stability analysis and control design for nonlinear system with time-varying delay. AIMS Mathematics, 2021, 6(1): 102-113. doi: 10.3934/math.2021008
    [5] Aisha F. Fareed, Emad A. Mohamed, Mokhtar Aly, Mourad S. Semary . A novel numerical method for stochastic conformable fractional differential systems. AIMS Mathematics, 2025, 10(3): 7509-7525. doi: 10.3934/math.2025345
    [6] Awais Younus, Khizra Bukhsh, Manar A. Alqudah, Thabet Abdeljawad . Generalized exponential function and initial value problem for conformable dynamic equations. AIMS Mathematics, 2022, 7(7): 12050-12076. doi: 10.3934/math.2022670
    [7] Tan Zhang, Pianpian Yan . Asymmetric integral barrier function-based tracking control of constrained robots. AIMS Mathematics, 2024, 9(1): 319-339. doi: 10.3934/math.2024019
    [8] Noha M. Kamel, Hamdy M. Ahmed, Wafaa B. Rabie . Solitons unveilings and modulation instability analysis for sixth-order coupled nonlinear Schrödinger equations in fiber bragg gratings. AIMS Mathematics, 2025, 10(3): 6952-6980. doi: 10.3934/math.2025318
    [9] Narongrit Kaewbanjak, Watcharin Chartbupapan, Kamsing Nonlaopon, Kanit Mukdasai . The Lyapunov-Razumikhin theorem for the conformable fractional system with delay. AIMS Mathematics, 2022, 7(3): 4795-4802. doi: 10.3934/math.2022267
    [10] Erfeng Xu, Wenxing Xiao, Yonggang Chen . Local stabilization for a hyperchaotic finance system via time-delayed feedback based on discrete-time observations. AIMS Mathematics, 2023, 8(9): 20510-20529. doi: 10.3934/math.20231045
  • Digital imaging in cytopathology can be defined as a series of procedures, those contributing to the quality of the displayed on the computer monitor final image. The procedures include sample preparation and staining, optical image formation by the microscope and afterwards the digital image sampling by the camera sensor; which means digital image post-processing and compression, transmission across the network and display on the monitor. A large amount of data about digital imaging exist. However, there are existing the problems with standardization and understanding of the digital imaging complete process. The field of digital imaging is rapidly evolving. The new models and protocols of the digital imaging are developed around the world, but in Georgia this field is still at evolving stages and revolves around static telecytology. It has been revealed, that the application of easy available and adaptable technology together with the improvement of infrastructure conditions is the essential basis for digital imaging. This tool is very useful for implementation of second opinion consultations on difficult cases. Digital imaging significantly increases knowledge exchange and thereby ensured a better medical service. The article aims description of digital imaging application for cytopathology under conditions of Georgia.


    The differential equations of some problems are defined on infinite intervals of some engineering problems. Because of the infinite of calculation interval, how to calculate the upper boundary value problem of infinite interval becomes an important research subject for many numerical analysts.

    Semi-infinite domain problems defined on $ (0, \infty) $ as

    $ F(x,u(x),u(x),u(x))=0,0<x<,
    $
    (1.1)

    with the boundary condition

    $ u(0)=c0,u()=u
    $
    (1.2)

    is considered, where $ F $ if continues function $ c_{0}, c_{\infty} $ are constants and $ u(\infty) = \lim_{x\rightarrow \infty}u(x) $.

    It is easier to get the solution of differential equation under mathematical theory in infinite interval than in finite interval by Fourier transform and Laplace transform. Numerical method cannot directly solve the differential equation problem in infinite interval. In order to solve the differential equations in infinite interval, we need to develop new methods such as truncation method and transformation method. In the paper [1], strictly monotonic transformation is transform the $ [0, \infty) $ into $ [-1, 1) $, two-point boundary value problem is solved by Chebyshev-Gauss collocation. In the paper [2], the method of weighted residuals is used to solve some problems involving boundary condition at infinity. In the paper [3], an original Petrov-Galerkin formulation of the Falkner-Skan equation is presented which is based on a judiciously chosen special basis function to capture the asymptotic behavior of the unknown. In the paper [4], based on the combination of Laplace transformation method and weighted residual method, an numerical method for the approximate solution of problems involving boundary condition at infinity is presented. Schrdinger-boussinesq system [5], nonlinear fractional $ K(m, n) $ type equation [6], nanotechnology and fractional [7,8], hirota-maccari system [9] and eneralized calogero-bogoyavlenskii-schiff equation [10] are studied. Generalized $ \phi $-convex functions [11], fractional integral operator [12], fractional-calculus theory [13], fractional inequalities [14], non-singular fractional integral operator [15] and differentiability in fractional calculus [16] are studied by Rashid and so on. In references [17,18], infinite cell method, the method of reconstructed kernels, Howarth's numerical solution and Runge-Kutta Fehlberg method have been used to numerically solve semi-infinite problems, respectively.

    Barycentrix interpolation collocation [19,20,21,22,23] have been developed to avoid the Runge phenomenon which is a meshfree method [24,25,26] to find approximate solutions to partial differential equations without integration. Meshless approach for the numerical solution of the nonlinear equal width equation, sine-Gordon system and sinh-Gordon equation were presented in [27,28,29], soliton wave solutions of nonlinear mathematical models, nonlinear sine-Gordon model and generalized Rosenau-KdV-RLW Equation were presented in [30,31,32]. In the recent paper, heat conduction equation [33], integral-differential equation [34], differential equation [35] and biharmonic equation [36] have been solved by linear barycentrix rational collocation methods. In the paper [37,38,39], barycentric interpolation collocation method for nonlinear problems, incompressible plane elastic problems and plane elastic problems and so on are presented.

    In this paper, we first consider the boundary value problem of linear differential equation on infinite interval for certain strictly monotone differentiable functions. By transformation of algebraic and Logarithmic, the infinite interval $ [0, \infty) $ is transformed to finite interval $ [-1, 1) $, then the linear barycentric rational collocation methods (LBRCM) of finite interval problem is illustrated. We also give the truncation method, which is to cut the infinite interval into a finite interval solution. Thirdly, the LBRCM is extended to nonlinear problem by the linearized iterative collocation method for solving nonlinear boundary value problems on infinite interval.

    This paper is organized as following: In Section 2, linear boundary problems transform from semi-infinite domain into $ [-1, 1) $. In Section 3, the convergence and error analysis of LBRCM is proved. At last, three numerical examples are listed to illustrated our theorem.

    In order to compute the semi-infinite domain problems easily, we give the transform as

    $ x=ϕ(t),t[1,1),x(0,)
    $
    (2.1)

    where $ \phi(t) $ is the strictly monotone differentiable functions, then we have $ u(x) = u(\phi(t)) = v(t) $. As we have

    $ dxdt=ϕ(t),dtdx=1ϕ(t),
    $

    by the rule of derivation, we have

    $ dudx=1ϕ(t)dvdt,
    $
    (2.2)
    $ d2udx2=1ϕ2(t)d2vdt2ϕ(t)ϕ3(t)dvdt,
    $
    (2.3)
    $ d3udx3=1ϕ3(t)d3vdt33ϕ2(t)ϕ4(t)d2vdt2ϕ(t)ϕ(t)3ϕ2(t)ϕ5(t)dvdt.
    $
    (2.4)

    Then we transform the $ (0, \infty) $ into $ (-1, 1) $ as the boundary value problems

    $ F(ϕ(t),v(t),1ϕ(t)dvdt,1ϕ2(t)d2vdt2ϕ(t)ϕ3(t)dvdt)=0,1t1
    $
    (2.5)

    and

    $ v(-1) = c_{0}, v(1) = c_{\infty}. $

    In the following, the interval $ [-1, 1] $ can be partitioned $ t_{0} = -1, t_{1}, \ldots, t_{n} = 1 $ and its semi-infinite domain $ c_{0}, c_{\infty} $ as $ x_{0} = -1, x_{1}, \ldots, x_{n} = \infty $ with

    $ xk=ϕ(tk),k=0,1,,n
    $

    and

    $ u(xk)=v(tk),1t1,
    $

    then we get the value at the mesh-point

    $ u(xk)=1ϕ(tk)v(tk),
    $
    (2.6)
    $ u(xk)=1ϕ2(tk)v(tk)ϕ(t)ϕ3(t)v(tk),
    $
    (2.7)

    and

    $ u(xk)=1ϕ3(t)v(tk)3ϕ2(t)ϕ4(t)v(tk)ϕ(t)ϕ(t)3ϕ2(t)ϕ5(t)v(tk)
    $
    (2.8)

    with the help of vector form

    $ u(1)=diag(1ϕ(tk))v(1),
    $
    (2.9)
    $ u(2)=diag(1ϕ2(tk))v(2)diag(ϕ(t)ϕ3(t))v(1),
    $
    (2.10)
    $ u(3)=diag(1ϕ3(t))v(3)diag(3ϕ2(t)ϕ4(t))v(2)diag(ϕ(t)ϕ(t)3ϕ2(t)ϕ5(t))v(1),
    $
    (2.11)

    where

    $ \mathbf{u} = [u(x_{0}), u(x_{1}), \ldots, u(x_{n})]^{\mathrm{T}}, \mathbf{v} = [v(t_{0}), v(t_{1}), \ldots, v(t_{n})]^{\mathrm{T}}, $
    $ \mathbf{u}^{(1)} = [u'(x_{0}), u'(x_{1}), \ldots, u'(x_{n})]^{\mathrm{T}}, \mathbf{v}^{(1)} = [v'(t_{0}), v'(t_{1}), \ldots, v'(t_{n})]^{\mathrm{T}}, $
    $ \mathbf{u}^{(2)} = [u''(x_{0}), u''(x_{1}), \ldots, u''(x_{n})]^{\mathrm{T}}, \mathbf{v}^{(2)} = [v''(t_{0}), v''(t_{1}), \ldots, v''(t_{n})]^{\mathrm{T}}, $
    $ \mathbf{u}^{(3)} = [u'''(x_{0}), u'''(x_{1}), \ldots, u'''(x_{n})]^{\mathrm{T}}, \mathbf{t} = [t_{0}, t_{1}, \ldots, t_{n}]^{\mathrm{T}}. $

    By the relationship of barycentric matrix at the meshpoint $ t_{0}, t_{1}, \ldots, t_{n} $, we have

    $ v(1)=D(1)v,v(2)=D(2)v,v(3)=D(3)v,
    $
    (2.12)

    where $ \mathbf{D}^{(m)} = D_{i j}^{(m)} = R_{j}^{(m)}\left(x_{i}\right) $ is the element of the differentiation matrices and $ R_{j}(x) = \frac{ \frac{w_{j}}{x-x_{j}} }{ \sum\limits_{k = 0}^{n} \frac{w_{k}}{x-x_{k}}} $ is basis function, see reference[37]. For $ m = 2 $, we have

    $ Rj(xi)=2wj/wixixj(kiwk/wixixk+1xixj),ji,
    $
    (2.13)

    where

    $ wk=iJk(1)ii+dj=i,jk1xkxj
    $

    is the weight function with $ J_{k} = \left\{i \in I : k-d \le i \le k\right\}, 0\le d\le n $ and

    $ Ri(xi)=jiRj(xi).
    $
    (2.14)

    Then we get the differentiable matrices as

    $ D(1)ij=Rj(xi),D(2)ij=Rj(xi),D(3)ij=R(3)j(xi).
    $
    (2.15)

    Combining the Eqs (2.10) and (2.12), we get

    $ u(1)=diag(1ϕ(t))D(1)v,
    $
    (2.16)
    $ u(2)=[diag(1ϕ2(t))D(2)diag(ϕ(t)ϕ3(t))D(1)]v,
    $
    (2.17)
    $ u(3)=[diag(1ϕ3(t))D(3)diag(3ϕ2(t)ϕ4(tk))D(2)]vdiag(ϕ(t)ϕ(t)3ϕ2(t)ϕ5(t))D(1)v.
    $
    (2.18)

    Taking following linear boundary value differential problems as example,

    $ u(x)+p(x)u(x)+q(x)u(x)=f(x),0<x<,
    $
    (2.19)

    by the transformation of $ (2.1) $ and (2.2), we have

    $ 1ϕ(2)v(t)ϕ(t)ϕ3(t)v(t)+p(ϕ(t))ϕ(t)v(t)+q(ϕ(t))u(ϕ(t))=f(ϕ(t)),1t1.
    $
    (2.20)

    Taking the meshpoint $ x_{0}, x_{1}, \ldots, x_{n} $ in the Eq (2.12), we have

    $ u(xk)+p(xk)u(xk)+q(xk)u(xk)=f(xk),k=0,1,2,,N,
    $
    (2.21)

    and its matrix form can be written as

    $ u(2)+diag(p(xk))u(1)+diag(q(xk))u=f(x),
    $
    (2.22)

    Combining Eqs (2.16)–(2.18) and (2.22), we have

    $ diag(1ϕ(2))D(2)vdiag(ϕ(t)ϕ3(t))D(1)v+diag(p(ϕ(t))ϕ(t))D(1)v+diag(q(ϕ(t)))v=f(ϕ(t)),
    $
    (2.23)

    where $ \mathbf{D}^{(2)} $ and $ \mathbf{D}^{(1)} $ are the barycentrix matrix, so we can not need to get the differential equation.

    In the actual calculation, we take the algebraic transformation as

    $ x=L1+t1t
    $
    (2.24)

    and Logarithmic transformation

    $ x=Lln1t2=Lln21t,
    $
    (2.25)

    where $ L $ is the positive constant called as amplification factor which determine the meshpoint of the semi-infinite domain.

    In order to complete the proof of convergence rate, some lemmas are given as below. Firstly, we define the error function

    $ e(x)=u(x)rn(x)=(xxi)(xxi+d)u[xi,xi+1,,xi+d;x]
    $
    (3.1)

    and

    $ e(x)=ndi=0λi(x)[u(x)rn(x)]ndi=0λi(x)=A(x)B(x)=O(hd+1),
    $
    (3.2)

    where $ A(x) : = \sum_{i = 0}^{n-d}(-1)^{i}u\left[x_{i}, \ldots, x_{i+d}; x\right], B(x) : = \sum_{i = 0}^{n-d} \lambda_{i}(x), $ and

    $ λi(x)=(1)i(xxi)(xxi+d).
    $
    (3.3)

    Taking the numerical scheme

    $ nj=0ujRj(x)+pnj=0ujRj(x)+qnj=0ujRj(x)=f(x).
    $
    (3.4)

    Combining (3.4) and (2.19), we have

    $ Le(x):=e(x)+pe(x)+qe(x)Rf(x),
    $
    (3.5)

    where $ R_{f}(x) = f(x)-f(x_{k}), k = 0, 1, 2, \ldots, n $.

    Lemma have been proved by Jean-Paul Berrut.

    Lemma 1. (see reference [19]) For $ e(x) $ defined as (3.1), there holds

    $ |e(k)(x)|Chd+1k,uCd+k+2[a,b],k=0,1,.
    $
    (3.6)

    Let $ u(x) $ to be the solution of (2.19) and $ u_{n}(x) $ is the numerical solution, then we have

    $ \mathcal{L} u_{n}(x_{k}) = f(x_{k}), k = 0, 1, 2, \ldots, n, $

    and

    $ \lim\limits_{n\rightarrow \infty}u_{n}(x) = u(x). $

    Based on the above lemma, we get the following theorem.

    Theorem 1. Let $ u_{n}(x):\mathcal{L} u_{n}(x_{k}) = f(x_{k}), f(x)\in C[a, b] $ and suppose $ \mathcal{L} $ be the invertible operator, we have

    $ |u_{n}(x)-u(x)|\le Ch^{d-1}. $

    Proof. As

    $ {u}_{n}(x) = \sum\limits_{j = 0}^{n} R_{j}(x) u_{j}. $

    Combining the Lemma 1 and Eq (3.5), we have

    $ |Le(x)|=|e(x)+qe(x)+qe(x)Rf(x)||e(x)|+|qe(x)|+|qe(x)|+|Rf(x)|Chd1+Chd+Chd+1Chd1.
    $
    (3.7)

    As $ \mathcal{L} $ is invertible operator. Then we have

    $ |{u}_{n}(x)-{u}(x)| \le Ch^{d-1}. $

    The proof is completed.

    Three examples are presented to valid our theorem. All the examples were performed on personal computer by Matlab r2013a with a (Confguration: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz).

    Example 1. Consider the boundary value problems

    $ u+2u2u=e2x,0<x<,
    $
    (4.1)
    $ u(0)=1,u()=0
    $
    (4.2)

    with analysis solution

    $ u(x) = \frac{1}2 (e^{-(1+\sqrt{3})x}+e^{-2x}). $

    In Table 1, CPU running times of algebraic transformation with equidistant nodes $ S = 5 $ of linear barycentric rational collocation methods are presented. From Table 1, we know that the running times is less than 3 second.

    Table 1.  CPU running times of algebraic transformation with equidistant nodes $ S = 5 $.
    $ n $ $ d=2 $ $ d=3 $ $ d=4 $ $ d=5 $
    $ 10 $ 8.1940e-03 4.7143e-03 2.0530e-03 6.5745e-04
    $ 20 $ 2.9926e-03 8.2744e-04 1.5364e-04 3.4327e-06
    $ 40 $ 5.8635e-04 8.0910e-05 6.7069e-06 1.5838e-07
    $ 80 $ 9.1053e-05 6.3050e-06 2.4638e-07 4.8568e-09
    $ 160 $ 1.2704e-05 4.4188e-07 8.4039e-09 9.7578e-11
    $ 320 $ 1.6815e-06 2.9356e-08 2.7601e-10 1.6812e-12
    time(second) 2.277 3.116 2.260 2.283

     | Show Table
    DownLoad: CSV

    In Tables 2 and 3, the convergence of algebraic transformation with equidistant nodes and quasi-equidistant nodes $ S = 5 $ of linear barycentric rational collocation methods are presented. In Table 2, with $ S = 5, d = 2, 3, 4, 5 $, errors of equidistant nodes are $ O(h^{d+1}) $. In Table 3, with $ S = 5, d = 2, 3, 4, 5 $, errors of quasi-equidistant nodes are $ O(h^{d+2}) $.

    Table 2.  Errors of algebraic transformation with equidistant nodes $ S = 5 $.
    $ n $ $ d=2 $ $ d=3 $ $ d=4 $ $ d=5 $
    $ 10 $ 8.1940e-03 4.7143e-03 2.0530e-03 6.5745e-04
    $ 20 $ 2.9926e-03 1.4532 8.2744e-04 2.5103 1.5364e-04 3.7401 3.4327e-06 7.5814
    $ 40 $ 5.8635e-04 2.3516 8.0910e-05 3.3543 6.7069e-06 4.5178 1.5838e-07 4.4379
    $ 80 $ 9.1053e-05 2.6870 6.3050e-06 3.6817 2.4638e-07 4.7667 4.8568e-09 5.0272
    $ 160 $ 1.2704e-05 2.8414 4.4188e-07 3.8348 8.4039e-09 4.8737 9.7578e-11 5.6373
    $ 320 $ 1.6815e-06 2.9175 2.9356e-08 3.9119 2.7601e-10 4.9283 1.6812e-12 5.8590

     | Show Table
    DownLoad: CSV
    Table 3.  Errors of algebraic transformation with quasi-equidistant nodes $ S = 5 $.
    $ n $ $ d=2 $ $ d=3 $ $ d=4 $ $ d=5 $
    $ 10 $ 2.6753e-02 1.2130e-02 3.6934e-03 7.1962e-04
    $ 20 $ 2.2977e-03 3.5414 5.7573e-04 4.3971 9.2680e-05 5.3166 2.9350e-06 7.9377
    $ 40 $ 1.7519e-04 3.7132 2.1363e-05 4.7522 1.6545e-06 5.8078 1.3132e-08 7.8042
    $ 80 $ 1.2976e-05 3.7551 7.5147e-07 4.8293 2.8327e-08 5.8681 1.0991e-10 6.9005
    $ 160 $ 9.3708e-07 3.7915 2.5684e-08 4.8708 4.7511e-10 5.8978 2.1025e-11 2.3862
    $ 320 $ 6.6037e-08 3.8268 8.6168e-10 4.8976 5.7275e-11 3.0523 8.8952e-10 -

     | Show Table
    DownLoad: CSV

    In Tables 4 and 5, errors of equidistant nodes and quasi-equidistant nodes log transformation $ d = 3 $ of linear barycentric rational collocation methods are presented. In Table 4, errors of equidistant nodes with $ d = 3, S = 5, 15, 25, 40, 50, 60 $ are $ O(h^{d+1}) $. In Table 5, errors of quasi-equidistant nodes with $ d = 3, S = 5, 15, 25, 40, 50, 60 $ are $ O(h^{d+1}) $.

    Table 4.  Errors of equidistant nodes with log transformation $ d = 3 $.
    $ n $ $ S=5 $ $ S=15 $ $ S=25 $ $ S=40 $ $ S=50 $ $ S=60 $
    $ 10 $ 4.3819e-05 5.0803e-04 2.1984e-03 4.9277e-03 7.8668e-03 1.0289e-02
    $ 20 $ 5.4907e-06 3.9227e-05 2.3810e-04 7.2881e-04 1.5591e-03 2.7012e-03
    $ 40 $ 7.5950e-07 2.7109e-06 1.9208e-05 6.7990e-05 1.6734e-04 3.3250e-04
    $ 80 $ 1.0979e-07 1.7834e-07 1.3619e-06 5.1736e-06 1.3642e-05 2.9016e-05
    $ 160 $ 1.6204e-08 1.1450e-08 9.0754e-08 3.5710e-07 9.7447e-07 2.1444e-06
    $ 320 $ 2.4156e-09 7.2589e-10 5.8623e-09 2.3479e-08 6.5185e-08 1.4592e-07

     | Show Table
    DownLoad: CSV
    Table 5.  Errors of quasi-equidistant nodes with log transformation $ d = 3 $.
    $ n $ $ S=5 $ $ S=15 $ $ S=25 $ $ S=40 $ $ S=50 $ $ S=60 $
    $ 10 $ 1.9110e-05 3.0625e-04 1.9235e-03 6.5161e-03 1.5280e-02 2.8619e-02
    $ 20 $ 1.2327e-06 7.3967e-06 5.3852e-05 2.1490e-04 5.9851e-04 1.3533e-03
    $ 40 $ 5.5047e-08 1.7798e-07 1.4130e-06 5.9639e-06 1.7865e-05 4.2421e-05
    $ 80 $ 2.5152e-09 4.6691e-09 3.9511e-08 1.7260e-07 5.2290e-07 1.2650e-06
    $ 160 $ 1.1602e-10 1.3339e-10 1.1640e-09 5.1541e-09 1.5723e-08 3.8136e-08
    $ 320 $ 5.7945e-12 6.0677e-12 3.5670e-11 1.5699e-10 4.8081e-10 1.1682e-09

     | Show Table
    DownLoad: CSV

    In Tables 6 and 7, errors of truncation method with equidistant nodes and quasi-equidistant nodes $ d = 3 $ of linear barycentric rational collocation methods are presented. In Table 6, errors of equidistant nodes with $ d = 3, S = 5, 15, 25, 40, 50, 60 $ are $ O(h^{d}) $. In Table 7, errors of quasi-equidistant nodes with $ d = 3, S = 5, 15, 25, 40, 50, 60 $ are $ O(h^{d}) $.

    Table 6.  Errors of truncation method with equidistant nodes $ d = 3 $.
    $ n $ $ S=5 $ $ S=15 $ $ S=25 $ $ S=40 $ $ S=50 $ $ S=60 $
    $ 10 $ 2.1223e-02 5.6913e-02 3.9768e-02 2.1094e-02 2.0192e-02 1.9600e-02
    $ 20 $ 3.5188e-03 3.4810e-02 4.9520e-02 4.1346e-02 3.2513e-02 2.5230e-02
    $ 40 $ 3.8273e-04 8.9325e-03 2.4157e-02 4.0168e-02 4.3242e-02 4.2114e-02
    $ 80 $ 3.5450e-05 1.3067e-03 5.2897e-03 1.5028e-02 2.2010e-02 2.8100e-02
    $ 160 $ 2.3284e-05 1.4200e-04 7.0907e-04 2.7523e-03 4.9296e-03 7.6340e-03
    $ 320 $ 2.3284e-05 1.3380e-05 7.3950e-05 3.3526e-04 6.6710e-04 1.1485e-03

     | Show Table
    DownLoad: CSV
    Table 7.  Errors of truncation method with quasi-equidistant nodes $ d = 3 $.
    $ n $ $ S=5 $ $ S=15 $ $ S=25 $ $ S=40 $ $ S=50 $ $ S=60 $
    $ 10 $ 2.7030e-02 3.0280e-01 4.2518e-01 3.6833e-01 3.0452e-01 2.5081e-01
    $ 20 $ 1.8985e-03 8.9395e-02 3.5376e-01 8.9282e-01 1.1958e+00 1.4081e+00
    $ 40 $ 1.0692e-04 7.2929e-03 4.3260e-02 1.8903e-01 3.5525e-01 5.7148e-01
    $ 80 $ 2.3284e-05 4.4342e-04 2.9492e-03 1.5790e-02 3.3935e-02 6.2143e-02
    $ 160 $ 2.3284e-05 2.6249e-05 1.7739e-04 9.9627e-04 2.2364e-03 4.3010e-03
    $ 320 $ 2.3284e-05 1.5817e-06 1.0630e-05 5.9696e-05 1.3464e-04 2.6112e-04

     | Show Table
    DownLoad: CSV

    Example 2. Consider the boundary value problems

    $ 8u+2uu=8e14x,0<x<,
    $
    (4.3)
    $ u(0)=1,u()=0
    $
    (4.4)

    and its analysis solution is

    $ u(x) = -3e^{-\frac{1}{2}x}+4e^{-\frac{3}{4}x}. $

    In Tables 8 and 9, errors of log transformation with equidistant nodes and quasi-equidistant nodes $ S = 8 $ of linear barycentric rational collocation methods are presented. In Table 8, errors of log transformation with equidistant nodes $ S = 8, d = 2, 3, 4, 5 $ are $ O(h^{d+1}) $. In Table 9, errors of log transformation with quasi-equidistant nodes $ S = 8, d = 2, 3, 4, 5 $ are $ O(h^{d+2}) $.

    Table 8.  Errors of log transformation with equidistant nodes $ S = 8 $.
    $ n $ $ d=2 $ $ d=3 $ $ d=4 $ $ d=5 $
    $ 10 $ 1.7920e-02 6.1866e-03 8.0099e-04 2.9488e-04
    $ 20 $ 2.6669e-03 2.7483 4.3639e-04 3.8255 3.2205e-05 4.6364 4.4835e-06 6.0394
    $ 40 $ 3.5692e-04 2.9015 2.8675e-05 3.9277 1.1054e-06 4.8647 6.8605e-08 6.0302
    $ 80 $ 4.5963e-05 2.9570 1.8342e-06 3.9666 3.6022e-08 4.9395 1.0604e-09 6.0156
    $ 160 $ 5.8252e-06 2.9801 1.1594e-07 3.9837 1.1488e-09 4.9707 1.6497e-11 6.0062
    $ 320 $ 7.3298e-07 2.9905 7.2873e-09 3.9919 3.6425e-11 4.9790 1.6509e-13 6.6428

     | Show Table
    DownLoad: CSV
    Table 9.  Errors of log transformation with quasi-equidistant nodes $ S = 8 $.
    $ n $ $ d=2 $ $ d=3 $ $ d=4 $ $ d=5 $
    $ 10 $ 1.2884e-02 3.1184e-03 3.7630e-04 5.0897e-05
    $ 20 $ 8.9366e-04 3.8497 6.6520e-05 5.5509 4.2951e-06 6.4530 3.8046e-07 7.0637
    $ 40 $ 5.1689e-05 4.1118 1.4461e-06 5.5236 4.7299e-08 6.5048 2.1039e-09 7.4986
    $ 80 $ 3.0710e-06 4.0731 3.4891e-08 5.3731 6.1916e-10 6.2553 1.9563e-11 6.7488
    $ 160 $ 1.8483e-07 4.0545 9.4700e-10 5.2033 1.3292e-11 5.5417 3.9667e-11 -
    $ 320 $ 1.1294e-08 4.0326 2.7845e-11 5.0879 9.5279e-11 - 1.9074e-09 -

     | Show Table
    DownLoad: CSV

    In Tables 10 and 11, errors of equidistant nodes and quasi-equidistant nodes log transformation $ d = 3 $ of linear barycentric rational collocation methods are presented. In Table 10, errors of equidistant nodes log transformation with $ d = 3, S = 5, 15, 25, 40, 50, 60 $ are $ O(h^{d+1}) $. In Table 11, errors of quasi-equidistant nodes log transformation with $ d = 3, S = 5, 15, 25, 40, 50, 60 $ are $ O(h^{d+1}) $.

    Table 10.  Errors of equidistant nodes log transformation with $ d = 3 $.
    $ n $ $ S=5 $ $ S=15 $ $ S=25 $ $ S=40 $ $ S=50 $ $ S=60 $
    $ 10 $ 1.2754e-01 4.7239e-03 3.3028e-03 1.1102e-15 9.6949e-04 2.0177e-03
    $ 20 $ 1.0096e-01 1.5512e-03 1.0035e-03 1.5543e-15 6.7291e-05 1.2162e-04
    $ 40 $ 7.7020e-02 5.2958e-04 3.2856e-04 9.7700e-15 7.1866e-06 7.4030e-06
    $ 80 $ 5.7531e-02 1.8400e-04 1.1148e-04 1.4821e-14 1.1037e-06 4.5563e-07
    $ 160 $ 4.2389e-02 6.4485e-05 3.8532e-05 1.2784e-13 1.8340e-07 2.8240e-08
    $ 320 $ 3.0936e-02 2.2697e-05 1.3453e-05 5.0154e-13 3.1563e-08 1.7571e-09

     | Show Table
    DownLoad: CSV
    Table 11.  Errors of quasi-equidistant nodes log transformation with $ d = 3 $.
    $ n $ $ S=5 $ $ S=15 $ $ S=25 $ $ S=40 $ $ S=50 $ $ S=60 $
    $ 10 $ 1.1024e-01 4.3445e-03 2.6631e-03 3.3307e-16 5.8846e-04 9.6881e-04
    $ 20 $ 1.6316e-01 1.1904e-03 6.5698e-04 2.9421e-15 2.3458e-05 1.9189e-05
    $ 40 $ 1.8549e-01 3.1977e-04 1.5566e-04 8.4377e-15 1.0472e-06 3.9498e-07
    $ 80 $ 1.4828e-01 6.4136e-05 3.0793e-05 1.6739e-13 5.4456e-08 9.3150e-09
    $ 160 $ 1.1057e-01 1.2704e-05 6.3129e-06 1.0436e-12 3.1336e-09 2.4767e-10
    $ 320 $ 8.4925e-02 2.6665e-06 1.3904e-06 4.1613e-12 1.8558e-10 7.7586e-12

     | Show Table
    DownLoad: CSV

    We consider the nonlinear boundary problems on semi-infinite domain with the Logarithmic transformation

    $ x=Lln1t2=Lln21t,
    $
    (4.5)

    where $ L $ is the positive constant called as amplification factor

    $ u(1)=diag(1tL)D(1)v,
    $
    (4.6)
    $ u(2)=[diag((1t)2L2)D(2)diag(1tL3)D(1)]v,
    $
    (4.7)
    $ u(3)=[diag((1t)3L3)D(3)diag(3(1t)2L3)D(2)+diag(1tL3)D(1)]v.
    $
    (4.8)

    Taking the notation as below,

    $ C(1)=diag(1tL)D(1),C(2)=diag((1t)2L2)D(2)diag(1tL3)D(1),C(3)=diag((1t)3L3)D(3)diag(3(1t)2L3)D(2)+diag(1tL3)D(1),
    $
    (4.9)

    we have

    $ u(1)=C(1)v,u(2)=C(2)v,u(3)=C(3)v.
    $
    (4.10)

    Example 3. Consider the nonlinear boundary value problems

    $ f(3)+ff(2)βf(1)(1+α)(f)2=0,0<x<,
    $
    (4.11)
    $ f(0)=0,f(1)(0)=0,f()=0
    $
    (4.12)

    and its analysis solution is

    $ f(\eta) = \frac{1}{\sqrt{1+\beta}}(1-e^{-\eta\sqrt{1+\beta}}). $

    For the know function $ f_{0}(\eta) $, (4.11) can be linearized as

    $ f+f0fβf(1+α)f0f=0,0<x<,
    $
    (4.13)

    then we get the linearized scheme as

    $ f(3)n+fn1f(2)nβf(1)n(1+α)(fn1)fn=0,0η,
    $
    (4.14)
    $ fn(0)=0,f(1)n(0)=0,fn()=0.
    $
    (4.15)

    We take the transformation as

    $ \eta = -L\ln \frac{1-t}{2}. $

    Then we get the calculation of barycentrix rational interpolation formulae as

    $ [C(3)+diag(vn1)C(2)βC(1)(1+α)diag(C(1)vn1)C(1)]vn=0,
    $
    (4.16)
    $ eT1vn=0,(d(1)1)Tvn=L2,(d(1)N)Tvn=0.
    $
    (4.17)

    In Tables 12 and 13, errors of log transformation with equidistant nodes and quasi-equidistant nodes $ d = 4 $ of linear barycentric rational collocation methods are presented. In Table 12, errors of log transformation with equidistant nodes $ d = 4, S = 5, 15, 25, 40, 50, 60 $ are $ O(h^{d+1}) $. In Table 13, errors of log transformation with quasi-equidistant nodes $ d = 4, S = 5, 15, 25, 40, 50, 60 $ are $ O(h^{d+1}) $.

    Table 12.  Errors of log transformation with equidistant nodes $ d = 4 $.
    $ n $ $ S=5 $ $ S=15 $ $ S=25 $ $ S=40 $ $ S=50 $ $ S=60 $
    $ 10 $ 1.1417e-01 1.1643e-03 3.8685e-04 2.6218e-03 1.4407e-02 3.3166e-02
    $ 20 $ 8.6017e-02 3.4701e-04 5.7745e-05 2.8848e-04 1.5798e-03 3.9883e-03
    $ 40 $ 6.4617e-02 9.8838e-05 7.5309e-06 2.7478e-05 1.5133e-04 4.0728e-04
    $ 80 $ 4.8719e-02 2.7898e-05 9.3159e-07 2.5008e-06 1.3783e-05 3.8393e-05
    $ 160 $ 3.6883e-02 7.8585e-06 1.1180e-07 2.2369e-07 1.2320e-06 3.4918e-06
    $ 320 $ 2.7996e-02 2.2227e-06 1.0890e-08 2.2044e-08 1.0968e-07 3.1330e-07

     | Show Table
    DownLoad: CSV
    Table 13.  Errors of log transformation with quasi-equidistant nodes $ d = 4 $.
    $ n $ $ S=5 $ $ S=15 $ $ S=25 $ $ S=40 $ $ S=50 $ $ S=60 $
    $ 10 $ 1.5523e-01 5.4277e-04 9.8075e-05 5.4433e-04 3.0401e-03 7.5620e-03
    $ 20 $ 1.6951e-01 6.0893e-05 1.8383e-06 4.4380e-06 2.4863e-05 7.1834e-05
    $ 40 $ 3.6280e-01 2.0078e-05 9.6699e-08 1.1358e-07 6.0548e-07 1.7855e-06
    $ 80 $ 3.3942e-01 1.4406e-05 1.8173e-07 4.4643e-08 1.2382e-08 4.1055e-08
    $ 160 $ 7.0711e-01 7.0711e-01 7.0840e-01 7.1450e-01 7.2004e-01 7.2419e-01
    $ 320 $ 7.5314e-01 7.5368e-01 7.0729e-01 9.7077e-01 8.2649e-01 7.4239e-01

     | Show Table
    DownLoad: CSV

    In Tables 14 and 15, errors of truncation method with equidistant nodes and quasi-equidistant nodes truncation method $ d = 4 $ of linear barycentric rational collocation methods are presented. In Table 14, errors of truncation method with equidistant nodes $ d = 4, S = 5, 15, 25, 40, 50, 60 $ are $ O(h^{d}) $. In Table 15, errors of truncation method with quasi-equidistant nodes $ d = 4, S = 5, 15, 25, 40, 50, 60 $ are $ O(h^{d}) $.

    Table 14.  Errors of truncation method with equidistant nodes $ d = 4 $.
    $ n $ $ S=5 $ $ S=15 $ $ S=25 $ $ S=40 $ $ S=50 $ $ S=60 $
    $ 10 $ 4.0047e-02 4.2878e-01 9.6623e-01 1.8391e+00 2.4362e+00 3.0389e+00
    $ 20 $ 5.6161e-03 1.0508e-01 2.9263e-01 6.4704e-01 9.0921e-01 1.1798e+00
    $ 40 $ 5.8518e-04 1.8933e-02 6.8111e-02 1.8598e-01 2.8381e-01 3.9150e-01
    $ 80 $ 1.0416e-03 2.5582e-03 1.1535e-02 3.9660e-02 6.7434e-02 1.0125e-01
    $ 160 $ 1.1000e-03 2.8311e-04 1.4849e-03 6.1589e-03 1.1596e-02 1.9000e-02
    $ 320 $ 1.1055e-03 2.8011e-05 1.5973e-04 7.4542e-04 1.5086e-03 2.6428e-03

     | Show Table
    DownLoad: CSV
    Table 15.  Errors of truncation method with quasi-equidistant nodes $ d = 4 $.
    $ n $ $ S=5 $ $ S=15 $ $ S=25 $ $ S=40 $ $ S=50 $ $ S=60 $
    $ 10 $ 8.7532e-03 1.5797e-01 3.9943e-01 8.4003e-01 1.1639e+00 1.4953e+00
    $ 20 $ 1.0564e-03 5.2940e-03 2.1988e-02 9.7691e-02 2.0783e-01 3.7063e-01
    $ 40 $ 1.1047e-03 1.7985e-04 1.1002e-03 5.7232e-03 1.4762e-02 3.3025e-02
    $ 80 $ 1.1060e-03 4.8801e-06 3.3783e-05 1.8744e-04 4.1176e-04 8.0327e-04
    $ 160 $ 1.1050e-03 1.4693e-07 9.3971e-07 5.4925e-06 1.2524e-05 2.4385e-05
    $ 320 $ 9.5026e-04 3.3705e-06 2.3864e-06 4.9717e-07 5.3707e-07 7.2421e-07

     | Show Table
    DownLoad: CSV

    Semi-infinite domain problems have been considered by linear barycentric interpolation method with the truncation method and transformation method. By transformation method, the semi-infinite domain $ [0, \infty) $ was transformed into $ [-1, 1] $ with the function become complex. The proof of the convergence rate have been presented and numerical examples conforms the theorem analysis for both the linear and nonlinear differential equation. In the future works, infinite domain problems will be considered by the linear barycentric interpolation method.

    The work of Jin Li was supported by Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003). The authors would also like to thank the referees for their constructive comments and remarks which helped improve the quality of the paper.

    The authors declare that they have no conflicts of interest.

    [1] Banta D (2003) The development of health technology assessment. Health Policy 63: 121-132. doi: 10.1016/S0168-8510(02)00059-3
    [2] Chatman C (2010) How cloud computing is changing the face of health care information technology. J Health Care Compliance 12(3): 37-70.
    [3] Clamp S, Keen J (2007) Electronic health records: Is the evidence base any use? J Med Informatics Int Med 32: 5-10.
    [4] Coleman R (2009) Can histology and pathology be taught without microscopes? The advantages and disadvantages of virtual histology. J Acta Histochemica 111(1): 1-4.
    [5] Detmer D (2000) Information technology for quality health care: a summary of United Kingdom and United States experiences. Quality in Health Care 9: 181-189. doi: 10.1136/qhc.9.3.181
    [6] Detmer D (2001) Transforming health care in the internet era. World Hospital Health Ser 37: 2.
    [7] Dixon R, Stahl J (2008) Virtual visits in a general medicine practice: A pilot study. Telemed e-Health 14(6): 525-530.
    [8] Furness PN (1997) The use of digital images in pathology. J Patholo183: 15-24.
    [9] Haughton J (2011) Year of the underdog: Cloud-based EHRs. Healthcare Management Technolo 32(1): 9
    [10] Hayrinen K, Saranto K, Nykanen P (2008) Definition, structure, content, use and impacts of electronic health records: A review of the research literature. Inter J Med Inform 77: 291-304.
    [11] Horbinski C, Wiley CA (2009) Comparison of telepathology systems in neuropathological intraoperative consultations. J Neuropatholo 19(2): 317-322.
    [12] Hufnagl P, Schluns K (2008) Virtual microscopy and routine diagnostics. A discussion paper. J Patholo 29(2): 250-254.
    [13] Kabachinski J (2011) What's the forecast for cloud computing in healthcare? Biomedical Instrumental Technolo 45(2): 146-150.
    [14] Kayser K, Hoshang SA, Metze K, et al. (2008) Texture- and object-related automated information analysis in histological still images of various organs. J Analytical Quantitative Cytolo Histo 30(6): 323-335.
    [15] Kobb R, Lane R, Stallings D (2008) E-learning and telehealth: Measuring your success. Telemedicine and e-Health 14(6): 576-579.
    [16] Lane K (2006) Telemedicine news. Telemedicine and e-Health 12(5): 507-511.
    [17] Lareng L (2002) Telemedicine in Europe. European J Int Med 13: 1-13.
    [18] Leong FJ, Graham AK, Schwarzmann P (2000) Clinical trial of telepathology as an alternative modality in breast histopathology quality assurance. J Telemed E-Health 6: 373-377.
    [19] Mencarelli R, Marcolongo A, Gasparetto A (2008) Organizational model for a telepathology system. J Diagnostic Patholo 15(3): S7.
    [20] Merell R, Doarn C (2008) Is it time for a telemedicine breakthrough? Telemed e-Health 14(6): 505-506.
    [21] Moore D, Green J, Jay S, et al. (1994). Creating a new paradigm for CME: Seizing opportunities within the health care revolution. J Continuing Education in the Health Professionals 14: 4-31. doi: 10.1002/chp.4750140102
    [22] Moura A, Del Giglio A (2000) Education via internet. Revist da Associacao Medica Brasileira, 46(1): 47-51.
    [23] Nannings B, Abu-Hanna A (2006) Decision support telemedicine systems: A conceptual model and reusable templates. Telemed e-Health 12(6): 644-654.
    [24] Pak H (2007) Telethinking. Telemed e-Health 13(5): 483-486.
    [25] Raab SS, Zaleski MS, Thomas PA (1996) Telecytology: diagnostic accuracy in cervical-vaginal smears. American J Clin Patholo 105: 599-603.
    [26] Riva G (2000) From telehealth to e-health: Internet and distributed virtual reality in health care. J CyberPsychology Behavior 3(6): 989-998.
    [27] Riva G (2002) The emergence of e-health: using virtual reality and the internet for providing advanced healthcare services. Int J Healthcare Technolo Management 4 (1/2): 15-40.
    [28] Rocha R, Vassallo J, Soares F, et al. (2009) Digital slides: present status of a tool for consultation, teaching, and quality control in pathology. J Patholo Res Prac 205(11): 735-741.
    [29] Rosenthal A, Mork P, Li MH, et al. (2010) Cloud computing: a new business paradigm for biomedical information sharing. J Biomed Inform 43(2): 342-353.
    [30] Sloot P, Tirado-Ramos A, Altintas I, et al. (2006) From molecule to man: Decision support in individualized E-Health. Computer 39(11): 40-46.
    [31] Van Ginneken AM (2002) The computerized patient record: Balancing effort and benefit. Int J Med Inform 65: 97-119.
    [32] Weinstein RS, Graham AR, Richte LC, et al. (2009) Overview of telepathology, virtual microscopy, and whole slide imaging: prospects for the future. J Human Patholo 40(8): 1057-1069.
    [33] Bautista PA, Yagi Y (2010) Improving the visualization and detection of tissue folds in whole slide images through color enhancement. J Pathol Inform 1:25.
    [34] Bloom K (2009) The virtual consultative network. Presented at Pathol. Vis. Conf., San Diego.
    [35] Bruch LA, De Young BR, Kreiter CD, et al. (2009) Competency assessment of residents in surgical pathology using virtual microscopy. Hum Pathol 40: 1122–1128.
    [36] Chargari C, Comperat E, Magne N, et al. (2011) Prostate needle biopsy examination by means of virtual microscopy. Pathol Res Pract 207: 366-369.
    [37] Costello SS, Johnston DJ, Dervan PA, et al. (2003) Development and evaluation of the virtual pathology slide: a new tool in telepathology. J Med Int Res 5: e11.
    [38] Daniel C, Rojo MG, Klossa J, et al. (2011) Standardizing the use of whole slide images in digital pathology. Comput Med Imaging Graph 35: 496-505.
    [39] Dee FR (2009) Virtual microscopy in pathology education. Hum Pathol 40: 1112-1121.
    [40] Della Mea V, Bortolotti N, Beltrami CA (2009) eSlide suite: an open source software system for whole slide imaging. J Clin Pathol 62: 749-751.
    [41] DICOM Stand. Comm. Work. Group 26 Pathol. Specimen Module and Revised Pathology SOP Classes, suppl. 122., 2008. Available from ftp://medical.nema.org/medical/dicom/final/sup122_ft2.pdf
    [42] DICOM Stand. Comm. Work. Group 26 Pathol. Whole Slide Microscopic Image IOD and SOP Classes, suppl. 145, 2008. Available from ftp://medical.nema.org/medical/dicom/supps/sup145_ft.pdf.
    [43] Difranco MD, O'Hurley G, Kay EW, et al. (2011) Ensemble based system for whole-slide prostate cancer probability mapping using color texture features. Comput Med Imaging Graph 35: 629-645.
    [44] Evans AJ, Chetty R, Clarke BA, et al. (2009) Primary frozen section diagnosis by robotic microscopy and virtual slide telepathology: the University Health Network experience. Hum Pathol 40: 1070-1081.
    [45] Evans AJ (2011) Re: Barriers and facilitators to adoption of soft copy interpretation from the user perspective: lessons learned from filmless radiology for slideless pathology. J Pathol Inform 2: 8.
    [46] Evans AJ, Sinard JH, Fatheree LA, et al. (2011) Validating whole slide imaging for diagnostic purposes in pathology: recommendations of the College of American Pathologists (CAP) Pathology and Laboratory Quality Center. Anal. Cell Pathol 34: 169-203.
    [47] Evered A, Dudding N (2010) Accuracy and perceptions of virtual microscopy compared with glass slide microscopy in cervical cytology. Cytopatholo 22: 82-87.
    [48] Fallon MA, Wilbur DC, Prasad M (2010) Ovarian frozen section diagnosis: Use of whole-slide imaging shows excellent correlation between virtual slide and original interpretations in a large series of cases. Arch Pathol Lab Med 134: 1020-1023.
    [49] Fine JL, Grzybicki DM, Silowash R, et al. (2008) Evaluation of whole slide image immunohistochemistry interpretation in challenging prostate needle biopsies. Hum Pathol 39: 564–572.
    [50] Fonyad L, Gerely L, Cserneky M, et al. (2010) Shifting gears higher—digital slides in graduate education—4 years experience at Semmelweis University. Diagn Pathol 5: 73.
    [51] Fung KM, Hassell LA, Talbert ML, et al. (2012) Whole slide images and digital media in pathology education, testing, and practice: the Oklahoma experience. Anal Cell Pathol 35: 37-40.
    [52] Gabril MY, Yousef GM (2010) Informatics for practicing anatomical pathologists: marking a new era in pathology practice. Mod Pathol 23: 349-358.
    [53] Gilbertson JR, Ho J, Anthony L, et al. (2006) Primary histologic diagnosis using automated whole slide imaging: a validation study. BMC Clin Pathol 6: 4.
    [54] Graham AR, Bhattacharyya AK, Scott KM, et al. (2009) Virtual slide telepathology for an academic teaching hospital surgical pathology quality assurance program. Hum Pathol 40: 1129-1136.
    [55] Hassell LA, Fung KM, Chaser B (2011) Digital slides and ACGME resident competencies in anatomic pathology: an altered paradigm for acquisition and assessment. J Pathol Inform 2: 27.
    [56] Hede K (2008) Breast cancer testing scandal shines spotlight on black box of clinical laboratory testing. J Natl Cancer Inst 100: 836-844.
    [57] Hedvat CV (2008) Digital microscopy: past, present, and future. Arch Pathol Lab Med 134: 1666-1670.
    [58] Ho J, Parwani AV, Jukic DM, et al. (2006) Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies. Hum Pathol 37: 322-331.
    [59] Ho J (2009) Validating digital slides for clinical use: When is image quality good enough? Presented at Pathol Vis Conf, San Diego.
    [60] Huisman A, Looijen A, van den Brink SM, et al. (2010) Creation of a fully digital pathology slide archive by high-volume tissue slide scanning. Hum Pathol 41: 751-757.
    [61] Jukic DM, Drogowski LM, Martina J, et al. (2011) Clinical examination and validation of primary diagnosis in anatomic pathology using whole slide digital images. Arch Pathol Lab Med 135: 372-378.
    [62] Isaacs M, Lennerz JK, Yates S, et al. (2011) Implementation of whole slide imaging in surgical pathology: a value added approach. J Pathol Inform 2: 39.
    [63] Kalinski T, Zwonitzer R, Sel S, et al. (2008) Virtual3Dmicroscopy usingmultiplane whole slide images in diagnostic pathology. Am J Clin Pathol 130: 259-264.
    [64] Krupinski EA, Tillack AA, Richter L, et al. (2006) Eye-movement study and human performance using telepathology virtual slides: implications for medical education and differences with experience. Hum Pathol 37: 1543-1556.
    [65] Krupinski EA (2009) Virtual slide telepathology workstation of the future: lessons learned from teleradiology. Hum Pathol 40: 1100-1111.
    [66] Li L, Dangott BJ, Parwani AV (2010) Development and use of a genitourinary pathology digital teaching set for trainee education. J Pathol Inform 1: 2.
    [67] Lopez AM, Graham AR, Barker GP, et al. (2009) Virtual slide telepathology enables an innovative telehealth rapid breast care clinic. Hum Pathol 40: 1082-1091.
    [68] Manion E, Cohen MB, Weydert J (2008) Mandatory second opinion in surgical pathology referral material: clinical consequences of major disagreements. Am J Surg Pathol 32: 732-737.
    [69] Massone C, Brunasso AM, Campbell TM, et al. (2008) State of the art of teledermatopathology. Am J Dermatopathol 30: 446-450.
    [70] Marchevsky AM, Khurana R, Thomas P, et al. (2006) The use of virtual microscopy for proficiency testing in gynecologic cytopathology: a feasibility study using ScanScope. Arch Pathol Lab Med 130: 349-355.
    [71] McClintock DS, Lee RE, Gilbertson JR (2012) Using computerized workflow simulations to assess the feasibility of whole slide imaging full adoption in a high-volume histology laboratory. Anal Cell Pathol 35: 57-64. doi: 10.1155/2012/726526
    [72] Merk M, Knuechel R, Perez-Bouza A (2010) Web-based virtual microscopy at the RWTH Aachen University: didactic concept, methods and analysis of acceptance by the students. Ann Anat 192: 383-387.
    [73] Mooney E, Hood AF, Lampros J, et al. (2011) Comparative diagnostic accuracy in virtual dermatopathology. Skin Res Technol 17: 251-255.
    [74] Nielsen PS, Lindebjerg J, Rasmussen J, et al. (2010). Virtual microscopy: an evaluation of its validity and diagnostic performance in routine histologic diagnosis of skin tumors. Hum Pathol 41: 1770-1776.
    [75] Pantanowitz L (2010) Digital images and the future of digital pathology. J Pathol Inform 1: 15.
    [76] Patterson ES, Rayo M, Gill C, et al. (2011) Barriers and facilitators to adoption of soft copy interpretation from the user perspective: lessons learned from filmless radiology for slideless pathology. J Pathol Inform 2: 9.
    [77] Paulsen FP, Eichhorn M, Brauer L (2010) Virtual microscopy: the future of teaching histology in the medical curriculum? Ann Anat 192: 378-382.
    [78] Raab SS, Nakhleh RE, Ruby SG (2005) Patient safety in anatomic pathology: measuring discrepancy frequencies and causes. Arch Pathol Lab Med 129: 459-466.
    [79] Raab SS, Grzybicki DM, Mahood LK, et al. (2008) Effectiveness of random and focused review in detecting surgical pathology error. Am J Clin Pathol 130: 905-912.
    [80] Ramey JP, Fung K, Hassell LA (2011) Validation of pathologist use of whole slide images for remote frozen section evaluation. Mod Pathol 24: 436 (Abstr.).
    [81] Ramey JP, Fung K, Hassell LA (2011) Use of mobile high resolution device for remote frozen section evaluation of whole slide images. Mod Pathol 24: 341 (Abstr.).
    [82] Reyes C, Ikpatt F, Nadiji M, et al. (2011) Is virtual microscopy ready for the prime time? A comparison with conventional microscopy. Mod Pathol 24: 454 (Abstr.).
    [83] Rodriguez-Urrego PA, Cronin AM, Al-Ahmadie HA, et al. (2011) Interobserver and intraobserver reproducibility in digital and routine microscopic assessment of prostate needle biopsies. Hum Pathol 42: 68-74.
    [84] Sawai T, Uzuki M, Kamataki A, et al. (2010) The state of telepathology in Japan. J Pathol Inform 1: 13. doi: 10.4103/2153-3539.68327
    [85] Schrader T, Niepage S, Leuthold T, et al. (2006) The diagnostic path, a useful visualisation tool in virtual microscopy. Diagn Pathol 1: 40.
    [86] Siegel EL, Kolonder RM (1999) Filmless Radiology. New York: Springer.
    [87] Spinosa JC (2008) Minute by minute, digital a boon to tumor board. Coll Am Pathol Today Arch.: Oct.
    [88] Stewart J, Miyazaki K, Bevans-Wilkins K, et al. (2007) Virtual microscopy for cytology proficiency testing: Are we there yet? Cancer 111: 203-209.
    [89] Stratman C (2009) Digital pathology in the clinical histology lab: a time and motion study. Presented at Pathol Vis Conf, San Diego.
    [90] Thrall M, Pantanowitz L, Khalbuss W (2011) Telecytology: clinical applications, current challenges, and future benefits. J Pathol Inform 2: 51.
    [91] Thorstenson S (2009) From the conventional microscope to the digital slide scanner in routine diagnostic histopathology. Presented at Pathol. Vis. Conf., San Diego.
    [92] Tsuchihashi Y, Takamatsu T, Hashimoto Y, et al. (2008) Use of virtual slide system for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan. Diagn Pathol 3(Suppl. 1): 6.
    [93] van den Tweel JG, Bosman FT (2011) The use of virtual slides in the EUROPALS examination. Diagn Pathol 6(Suppl. 1): 23.
    [94] Velez N, Jukic D, Ho J (2008) Evaluation of two whole-slide imaging applications in dermatopathology. Hum Pathol 39: 1341-1349.
    [95] Weinstein RS, Graham AR, Richter LC, et al. (2009) Overview of telepathology, virtual microscopy, and whole slide imaging: prospects for the future. Hum Pathol 40: 1057-1069.
    [96] Wilbur DC, Madi K, Colvin RB, et al. (2009) Whole-slide imaging digital pathology as a platform for teleconsultation: a pilot study using paired subspecialist correlations. Arch Pathol Lab Med 133: 1949-1953.
    [97] Williams S, Henricks WH, Becich MJ, et al. (2010) Telepathology for patient care: What am I getting myself into? Adv Anat Pathol 17: 130-149.
    [98] Woolgar JA, Ferlito A, Devaney KO, et al. (2011) How trustworthy is a diagnosis in head and neck surgical pathology? A consideration of diagnostic discrepancies (errors). Eur Arch Otorhinolaryngol 268: 643-651. doi: 10.1007/s00405-011-1526-x
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5605) PDF downloads(916) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog