Citation: Tamás Micsik, Göran Elmberger, Anders Mikael Bergquist, László Fónyad. Experiences with an International Digital Slide Based Telepathology System for Routine Sign-out between Sweden and Hungary[J]. AIMS Medical Science, 2015, 2(2): 79-89. doi: 10.3934/medsci.2015.2.79
[1] | Zhihua Wang . Approximate mixed type quadratic-cubic functional equation. AIMS Mathematics, 2021, 6(4): 3546-3561. doi: 10.3934/math.2021211 |
[2] | Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park . Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054 |
[3] | Abasalt Bodaghi, Choonkil Park, Sungsik Yun . Almost multi-quadratic mappings in non-Archimedean spaces. AIMS Mathematics, 2020, 5(5): 5230-5239. doi: 10.3934/math.2020336 |
[4] | Zhihua Wang . Stability of a mixed type additive-quadratic functional equation with a parameter in matrix intuitionistic fuzzy normed spaces. AIMS Mathematics, 2023, 8(11): 25422-25442. doi: 10.3934/math.20231297 |
[5] | Lingxiao Lu, Jianrong Wu . Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces. AIMS Mathematics, 2022, 7(5): 8574-8587. doi: 10.3934/math.2022478 |
[6] | K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383 |
[7] | Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen . Refined stability of the additive, quartic and sextic functional equations with counter-examples. AIMS Mathematics, 2023, 8(6): 14399-14425. doi: 10.3934/math.2023736 |
[8] | Cure Arenas Jaffeth, Ferrer Sotelo Kandy, Ferrer Villar Osmin . Functions of bounded $ {\bf (2, k)} $-variation in 2-normed spaces. AIMS Mathematics, 2024, 9(9): 24166-24183. doi: 10.3934/math.20241175 |
[9] | Ekram E. Ali, Rabha M. El-Ashwah, Wafaa Y. Kota, Abeer M. Albalahi, Teodor Bulboacă . A study of generalized distribution series and their mapping properties in univalent function theory. AIMS Mathematics, 2025, 10(6): 13296-13318. doi: 10.3934/math.2025596 |
[10] | Nazek Alessa, K. Tamilvanan, G. Balasubramanian, K. Loganathan . Stability results of the functional equation deriving from quadratic function in random normed spaces. AIMS Mathematics, 2021, 6(3): 2385-2397. doi: 10.3934/math.2021145 |
The study of stability problems for functional equations is related to a question of Ulam [23] in 1940 concerning the stability of group homomorphisms.
The functional equation
$ f(x+y)=f(x)+f(y) $ | (1.1) |
is called Cauchy functional equation. Every solution of the Cauchy functional equation is said to be an additive mapping. In $ 1941 $, Hyers [10] gave the first affirmative answer to the question of Ulam for Banach spaces. Hyers' result was generalized by Aoki [1] for additive mappings and by Rassias [20] for linear mappings by considering an unbounded Cauchy difference. In $ 1994 $, Găvruţă [3] provided a further generalization of the Rassias' theorem in which he replaced the unbounded Cauchy difference by a general control function.
The following functional equation
$ 2f(x+y2)=f(x)+f(y) $ | (1.2) |
is called Jensen functional equation. See [15,16,19,22] for more information on functional equations.
Gilányi [7] and Rätz [21] showed that if $ f $ satisfies the functional inequality
$ ‖2f(x)+2f(y)−f(xy−1)‖≤‖f(xy)‖, $ | (1.3) |
then $ f $ satisfies the Jordan-Von Neumann functional equation
$ 2f(x)+2f(y)=f(xy)+f(xy−1). $ |
Fechner [2] and Gilányi [8] proved the generalized Hyers-Ulam stability of the functional inequality (1.1). Park et al. [17] investigated the generalized Hyers-Ulam stability of functional inequalities associated with Jordon-Von Neumann type additive functional equations. Kim et al. [11] solved the additive $ \rho $-functional inequalities in complex normed spaces and proved the Hyers-Ulam stability of the additive $ \rho $-functional inequalities in complex Banach spaces. In $ 2014 $, Park [14] considered the following two additive $ \rho $-functional inequalities
$ ‖f(x+y)−f(x)−f(y)‖≤‖ρ(2f(x+y2)−f(x)−f(y))‖, $ | (1.4) |
$ ‖2f(x+y2)−f(x)−f(y)‖≤‖ρ(f(x+y)−f(x)−f(y))‖ $ | (1.5) |
in non-Archimedean Banach spaces and in complex Banach spaces, where $ \rho $ is a fixed non-Archimedean number with $ |\rho| < 1 $ or $ \rho $ is a fixed complex number with $ |\rho| < 1 $.
In this paper, we establish the solution of the additive $ \rho $-functional inequalities (1.4) and (1.5), and prove the Hyers-Ulam stability of the additive $ \rho $-functional inequalities (1.4) and (1.5) in non-Archimedean $ 2 $-Banach spaces. Moreover, we prove the Hyers-Ulam stability of additve $ \rho $-functional equations associated with the additive $ \rho $-functional inequalities (1.4) and (1.5) in non-Archimedean $ 2 $-Banach spaces.
Gähler [4,5] has introduced the concept of linear $ 2 $-normed spaces in the middle of the 1960s. Then Gähler [6] and White [24,25] introduced the concept of $ 2 $-Banach spaces. Following [9,12,13,18], we recall some basic facts concerning non-Archimedean normed space and non-Archimedean $ 2 $-normed space and some preliminary results.
By a non-Archimedean field we mean a field $ {\mathbb{K}} $ equipped with a function (valuation) $ |\cdot| $ from $ {\mathbb{K}} $ into $ [0, \infty) $ such that $ |r| = 0 $ if and only if $ r = 0 $, $ |rs| = |r||s| $, and $ |r+s|\leq \max\{|r|, |s|\} $ for $ r, s \in {\mathbb{K}} $. Clearly $ |1| = |-1| = 1 $ and $ |n|\leq 1 $ for all $ n\in {\mathbb{N}} $. By the trivial valuation we mean the function $ |\cdot| $ taking everything but $ 0 $ into $ 1 $ and $ |0| = 0 $.
Definition 1.1. (cf. [9,13]) Let $ X $ be a linear space over a scalar field $ {\mathbb{K}} $ with a non-Archimedean non-trivial valuation $ |\cdot| $. A function $ \|\cdot\|:X\to {\mathbb{R}} $ is called a non-Archimedean norm (valuation) if it satisfies the following conditions:
(i) $ \|x\| = 0 $ if and only if $ x = 0 $;
(ii) $ \|rx\| = |r|\|x\| $ for all $ r\in {\mathbb{K}} $, $ x\in X $;
(iii) the strong triangle inequality; namely,
$ ‖x+y‖≤max{‖x‖,‖y‖} $ |
for all $ x, y\in X $. Then $ (X, \|\cdot\|) $ is called a non-Archimedean normed space.
Definition 1.2. (cf. [12,18]) Let $ X $ be a linear space over a scalar field $ {\mathbb{K}} $ with a non-Archimedean non-trivial valuation $ |\cdot| $ with $ \dim X > 1 $. A function $ \|\cdot, \cdot\|:X\to {\mathbb{R}} $ is called a non-Archimedean $ 2 $-norm (valuation) if it satisfies the following conditions:
(NA1) $ \|x, y\| = 0 $ if and only if $ x, y $ are linearly dependent;
(NA2) $ \|x, y\| = \|y, x\| $;
(NA3) $ \|rx, y\| = |r|\|x, y\| $;
(NA4) $ \|x, y+z\|\leq\max\{\|x, y\|, \|x, z\|\} $;
for all $ r\in {\mathbb{K}} $ and all $ x, y, z\in X $. Then $ (X, \|\cdot, \cdot\|) $ is called a non-Archimedean $ 2 $-normed space.
According to the conditions in Definition 1.2, we have the following lemma.
Lemma 1.3. Let $ (X, \|\cdot, \cdot\|) $ be a non-Archimedean $ 2 $-normed space. If $ x\in X $ and $ \|x, y\| = 0 $ for all $ y\in X $, then $ x = 0 $.
Definition 1.4. A sequence $ \{x_{n}\} $ in a non-Archimedean $ 2 $-normed space $ (X, \|\cdot, \cdot\|) $ is called a Cauchy sequence if there are two linearly independent points $ y, z\in X $ such that
$ limm,n→∞‖xn−xm,y‖=0andlimm,n→∞‖xn−xm,z‖=0. $ |
Definition 1.5. A sequence $ \{x_{n}\} $ in a non-Archimedean $ 2 $-normed space $ (X, \|\cdot, \cdot\|) $ is called a convergent sequence if there exists an $ x\in X $ such that
$ limn→∞‖xn−x,y‖=0 $ |
for all $ y\in X $. In this case, we call that $ \{x_{n}\} $ converges to $ x $ or that $ x $ is the limit of $ \{x_{n}\} $, write $ \{x_{n}\}\to x $ as $ n\to\infty $ or $ \lim\limits_{n\to\infty}x_{n} = x $.
By $ {\rm{(NA4)}} $, we have
$ ‖xn−xm,y‖≤max{‖xj+1−xj,y‖:m≤j≤n−1},(n>m), $ |
for all $ y\in X $. Hence, a sequence $ \{x_{n}\} $ is Cauchy in $ (X, \|\cdot, \cdot\|) $ if and only if $ \{x_{n+1}-x_{n}\} $ converges to zero in a non-Archimedean $ 2 $-normed space $ (X, \|\cdot, \cdot\|) $.
Remark 1.6. Let $ (X, \|\cdot, \cdot\|) $ be a non-Archimedean $ 2 $-normed space. One can show that conditions (NA2) and (NA4) in Definition 1.2 imply that
$ ‖x+y,z‖≤‖x,z‖+‖y,z‖and|‖x−z‖−‖y,z‖|≤‖x−y,z‖ $ |
for all $ x, y, z\in X $.
We can easily get the following lemma by Remark 1.6.
Lemma 1.7. For a convergent sequence $ \{x_{n}\} $ in a non-Archimedean $ 2 $-normed space $ (X, \|\cdot, \cdot\|) $,
$ limn→∞‖xn,y‖=‖limn→∞xn,y‖ $ |
for all $ y\in X $.
Definition 1.8. A non-Archimedean $ 2 $-normed space, in which every Cauchy sequence is a convergent sequence, is called a non-Archimedean $ 2 $-Banach space.
Throughout this paper, let $ X $ be a non-Archimedean $ 2 $-normed space with $ \dim X > 1 $ and $ Y $ be a non-Archimedean $ 2 $-Banach space with $ \dim Y > 1 $. Let $ {\mathbb{N}} = \{0, 1, 2, \ldots, \} $, and $ \rho $ be a fixed non-Archimedean number with $ |\rho| < 1 $.
In this section, we solve and investigate the additive $ \rho $-functional inequality (1.4) in non-Archimedean $ 2 $-normed spaces.
Lemma 2.1. A mapping $ f:X\to Y $ satisfies
$ ‖f(x+y)−f(x)−f(y),ω‖≤‖ρ(2f(x+y2)−f(x)−f(y)),ω‖ $ | (2.1) |
for all $ x, y\in X $ and all $ \omega\in Y $ if and only if $ f:X\to Y $ is additive.
Proof. Suppose that $ f $ satisfies (2.1). Setting $ x = y = 0 $ in (2.1), we have $ \|f(0), \omega\|\leq \|0, \omega\| $ = 0 for all $ \omega\in Y $ and so $ \|f(0), \omega\| = 0 $ for all $ \omega\in Y $. Hence we get
$ f(0)=0. $ |
Putting $ y = x $ in (2.1), we get
$ ‖f(2x)−2f(x),ω‖≤‖0,ω‖ $ | (2.2) |
for all $ x\in X $ and all $ \omega\in Y $. Thus we have
$ f(x2)=12f(x) $ | (2.3) |
for all $ x\in X $. It follows from (2.1) and (2.3) that
$ ‖f(x+y)−f(x)−f(y),ω‖≤‖ρ(2f(x+y2)−f(x)−f(y)),ω‖=|ρ|‖f(x+y)−f(x)−f(y),ω‖ $ | (2.4) |
for all $ x, y\in X $ and all $ \omega\in Y $. Hence, we obtain
$ f(x+y)=f(x)+f(y) $ |
for all $ x, y\in X $.
The converse is obviously true. This completes the proof of the lemma.
The following corollary can be found in [14,Corollary 2.2].
Corollary 2.2. A mapping $ f:X\to Y $ satisfies
$ f(x+y)−f(x)−f(y)=ρ(2f(x+y2)−f(x)−f(y)) $ | (2.5) |
for all $ x, y\in X $ if and only if $ f:X\to Y $ is additive.
Theorem 2.3. Let $ \varphi:X^{2}\to [0, \infty) $ be a function such that
$ limj→∞1|2|jφ(2jx,2jy)=0 $ | (2.6) |
for all $ x, y\in X $. Suppose that $ f:X\to Y $ be a mapping satisfying
$ ‖f(x+y)−f(x)−f(y),ω‖≤‖ρ(2f(x+y2)−f(x)−f(y)),ω‖+φ(x,y) $ | (2.7) |
for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that
$ ‖f(x)−A(x),ω‖≤supj∈N{1|2|j+1φ(2jx,2jx)} $ | (2.8) |
for all $ x\in X $ and all $ \omega\in Y $.
Proof. Letting $ y = x $ in (2.6), we get
$ ‖f(2x)−2f(x),ω‖≤φ(x,x) $ | (2.9) |
for all $ x\in X $ and all $ \omega\in Y $. So
$ ‖f(x)−12f(2x),ω‖≤1|2|φ(x,x) $ | (2.10) |
for all $ x\in X $ and all $ \omega\in Y $. Hence
$ ‖12lf(2lx)−12mf(2mx),ω‖≤max{‖12lf(2lx)−12l+1f(2l+1x),ω‖,⋯,‖12m−1f(2m−1x)−12mf(2mx),ω‖}≤max{1|2|l‖f(2lx)−12f(2l+1x),ω‖,⋯,1|2|m−1‖f(2m−1x)−12f(2mx),ω‖}≤supj∈{l,l+1,…}{1|2|j+1φ(2jx,2jx)} $ | (2.11) |
for all nonnegative integers $ m, l $ with $ m > l $ and for all $ x\in X $ and all $ \omega\in Y $. It follows from (2.11) that
$ liml,m→∞‖12lf(2lx)−12mf(2mx),ω‖=0 $ |
for all $ x\in X $ and all $ \omega\in Y $. Thus the sequence $ \{\frac{f(2^{n}x)}{2^{n}}\} $ is a Cauchy sequence in $ Y $. Since $ Y $ is a non-Archimedean $ 2 $-Banach space, the sequence $ \{\frac{f(2^{n}x)}{2^{n}}\} $ converges for all $ x\in X $. So one can define the mapping $ A:X\to Y $ by
$ A(x):=limn→∞f(2nx)2n $ |
for all $ x\in X $. That is,
$ limn→∞‖f(2nx)2n−A(x),ω‖=0 $ |
for all $ x\in X $ and all $ \omega\in Y $.
By Lemma 1.7, (2.6) and (2.7), we get
$ ‖A(x+y)−A(x)−A(y),ω‖=limn→∞1|2|n‖f(2n(x+y))−f(2nx)−f(2ny),ω‖≤limn→∞1|2|n‖ρ(2f(2n(x+y)2)−f(2nx)−f(2ny)),ω‖+limn→∞1|2|nφ(2nx,2ny)=‖ρ(2A(x+y2)−A(x)−A(y)),ω‖ $ | (2.12) |
for all $ x, y\in X $ and all $ \omega\in Y $. Thus, the mapping $ A:X\to Y $ is additive by Lemma 2.1.
By Lemma 1.7 and (2.11), we have
$ ‖f(x)−A(x),ω‖=limm→∞‖f(x)−f(2mx)2m,ω‖≤supj∈N{1|2|j+1φ(2jx,2jx)} $ |
for all $ x\in X $ and all $ \omega\in Y $. Hence, we obtain (2.8), as desired.
To prove the uniqueness property of $ A $, Let $ A^{\prime}: X\to Y $ be an another additive mapping satisfying (2.8). Then we have
$ ‖A(x)−A′(x),ω‖=‖12nA(2nx)−12nA′(2nx),ω‖≤max{‖12nA(2nx)−12nf(2nx),ω‖,‖12nf(2nx)−12nA′(2nx),ω‖}≤supj∈N{1|2|n+j+1φ(2n+jx,2n+jx)}, $ |
which tends to zero as $ n\to \infty $ for all $ x\in X $ and all $ \omega\in Y $. By Lemma 1.3, we can conclude that $ A(x) = A^{\prime}(x) $ for all $ x\in X $. This proves the uniqueness of $ A $.
Corollary 2.4. Let $ r, \theta $ be positive real numbers with $ r > 1 $, and let $ f:X\to Y $ be a mapping such that
$ ‖f(x+y)−f(x)−f(y),ω‖≤‖ρ(2f(x+y2)−f(x)−f(y)),ω‖+θ(‖x‖r+‖y‖r)‖ω‖ $ | (2.13) |
for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that
$ ‖f(x)−A(x),ω‖≤2|2|θ‖x‖r‖ω‖ $ | (2.14) |
for all $ x\in X $ and all $ \omega\in Y $.
Proof. The proof follows from Theorem 2.3 by taking $ \varphi(x, y) = \theta(\|x\|^{r}+\|y\|^{r})\|\omega\| $ for all $ x, y\in X $ and all $ \omega\in Y $, as desired.
Theorem 2.5. Let $ \varphi:X^{2}\to [0, \infty) $ be a function such that
$ limj→∞|2|jφ(x2j,y2j)=0 $ | (2.15) |
for all $ x, y\in X $. Suppose that $ f:X\to Y $ be a mapping satisfying
$ ‖f(x+y)−f(x)−f(y),ω‖≤‖ρ(2f(x+y2)−f(x)−f(y)),ω‖+φ(x,y) $ | (2.16) |
for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that
$ ‖f(x)−A(x),ω‖≤supj∈N{|2|jφ(x2j+1,x2j+1)} $ | (2.17) |
for all $ x\in X $ and all $ \omega\in Y $.
Proof. It follows from (2.9) that
$ ‖f(x)−2f(x2),ω‖≤φ(x2,x2) $ | (2.18) |
for all $ x\in X $ and all $ \omega\in Y $. Hence
$ ‖2lf(x2l)−2mf(x2m),ω‖≤max{‖2lf(x2l)−2l+1f(x2l+1),ω‖,⋯,‖2m−1f(x2m−1)−2mf(x2m),ω‖}≤max{|2|l‖f(x2l)−2f(x2l+1),ω‖,⋯,|2|m−1‖f(x2m−1)−2f(x2m),ω‖}≤supj∈{l,l+1,…}{|2|jφ(x2j+1,x2j+1)} $ | (2.19) |
for all nonnegative integers $ m, l $ with $ m > l $ and for all $ x\in X $ and all $ \omega\in Y $. It follows from (2.19) that
$ liml,m→∞‖2lf(x2l)−2mf(x2m),ω‖=0 $ |
for all $ x\in X $ and all $ \omega\in Y $. Thus the sequence $ \{2^{n}f(\frac{x}{2^{n}})\} $ is a Cauchy sequence in $ Y $. Since $ Y $ is a non-Archimedean $ 2 $-Banach space, the sequence $ \{2^{n}f(\frac{x}{2^{n}})\} $ converges for all $ x\in X $. So one can define the mapping $ A:X\to Y $ by
$ A(x):=limn→∞2nf(x2n) $ |
for all $ x\in X $. That is,
$ limn→∞‖2nf(x2n)−A(x),ω‖=0 $ |
for all $ x\in X $ and all $ \omega\in Y $. By Lemma 1.7 and (2.19), we have
$ ‖f(x)−A(x),ω‖=limm→∞‖f(x)−2mf(x2m),ω‖≤supj∈N{|2|jφ(x2j+1,x2j+1)} $ |
for all $ x\in X $ and all $ \omega\in Y $. Hence, we obtain (2.17), as desired. The rest of the proof is similar to that of Theorem 2.3 and thus it is omitted.
Corollary 2.6. Let $ r, \theta $ be positive real numbers with $ r < 1 $, and let $ f:X\to Y $ be a mapping satisfying (2.13) for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that
$ ‖f(x)−A(x),ω‖≤2|2|rθ‖x‖r‖ω‖ $ | (2.20) |
for all $ x\in X $ and all $ \omega\in Y $.
Let $ A(x, y): = f(x+y)-f(x)-f(y) $ and $ B(x, y): = \rho(2f(\frac{x+y}{2})-f(x)-f(y)) $ for all $ x, y\in X $. For $ x, y\in X $ and $ \omega\in Y $ with $ \|A(x, y), \omega\|\leq \|B(x, y), \omega\| $, we have
$ ‖A(x,y),ω‖−‖B(x,y),ω‖≤‖A(x,y)−B(x,y),ω‖. $ |
For $ x, y\in X $ and $ \omega\in Y $ with $ \|A(x, y), \omega\| > \|B(x, y), \omega\| $, we have
$ ‖A(x,y),ω‖=‖A(x,y)−B(x,y)+B(x,y),ω‖≤max{‖A(x,y)−B(x,y),ω‖,‖B(x,y),ω‖}=‖A(x,y)−B(x,y),ω‖≤‖A(x,y)−B(x,y),ω‖+‖B(x,y),ω‖. $ |
So we can obtain
$ ‖f(x+y)−f(x)−f(y),ω‖−‖ρ(2f(x+y2)−f(x)−f(y)),ω‖≤‖f(x+y)−f(x)−f(y)−ρ(2f(x+y2)−f(x)−f(y)),ω‖. $ |
As corollaries of Theorems 2.3 and 2.5, we obtain the Hyers-Ulam stability results for the additive $ \rho $-functional equation associated with the additive $ \rho $-functional inequality (1.4) in non-Archimedean $ 2 $-Banach spaces.
Corollary 2.7. Let $ \varphi:X^{2}\to [0, \infty) $ be a function and let $ f:X\to Y $ be a mapping satisfying (2.6) and
$ ‖f(x+y)−f(x)−f(y)−ρ(2f(x+y2)−f(x)−f(y)),ω‖≤φ(x,y) $ | (2.21) |
for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (2.8) for all $ x\in X $ and all $ \omega\in Y $.
Corollary 2.8. Let $ r, \theta $ be positive real numbers with $ r > 1 $, and let $ f:X\to Y $ be a mapping such that
$ ‖f(x+y)−f(x)−f(y)−ρ(2f(x+y2)−f(x)−f(y)),ω‖≤θ(‖x‖r+‖y‖r)‖ω‖ $ | (2.22) |
for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (2.14) for all $ x\in X $ and all $ \omega\in Y $.
Corollary 2.9. Let $ \varphi:X^{2}\to [0, \infty) $ be a function and let $ f:X\to Y $ be a mapping satisfying (2.15) and (2.21) for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (2.17) for all $ x\in X $ and all $ \omega\in Y $.
Corollary 2.10. Let $ r, \theta $ be positive real numbers with $ r < 1 $, and let $ f:X\to Y $ be a mapping satisfying (2.22) for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (2.20) for all $ x\in X $ and all $ \omega\in Y $.
In this section, we solve and investigate the additive $ \rho $-functional inequality (1.5) in non-Archimedean $ 2 $-normed spaces.
Lemma 3.1. A mapping $ f:X\to Y $ satisfies $ f(0) = 0 $ and
$ ‖2f(x+y2)−f(x)−f(y),υ‖≤‖ρ(f(x+y)−f(x)−f(y)),υ‖ $ | (3.1) |
for all $ x, y\in X $ and all $ \upsilon \in Y $ if and only if $ f:X\to Y $ is additive.
Proof. Suppose that $ f $ satisfies (3.1). Letting $ y = 0 $ in (3.1), we have
$ ‖2f(x2)−f(x),υ‖≤‖0,υ‖=0 $ | (3.2) |
for all $ x\in X $ and all $ \upsilon\in Y $. Thus we have
$ f(x2)=12f(x) $ | (3.3) |
for all $ x\in X $. It follows from (3.1) and (3.3) that
$ ‖f(x+y)−f(x)−f(y),υ‖=‖2f(x+y2)−f(x)−f(y),υ‖≤|ρ|‖f(x+y)−f(x)−f(y),υ‖ $ | (3.4) |
for all $ x, y\in X $ and all $ \upsilon\in Y $. Hence, we obtain
$ f(x+y)=f(x)+f(y) $ |
for all $ x, y\in X $.
The converse is obviously true. This completes the proof of the lemma.
The following corollary can be found in [14,Corollary 3.2].
Corollary 3.2. A mapping $ f:X\to Y $ satisfies $ f(0) = 0 $ and
$ 2f(x+y2)−f(x)−f(y)=ρ(f(x+y)−f(x)−f(y)) $ | (3.5) |
for all $ x, y\in X $ if and only if $ f:X\to Y $ is additive.
Theorem 3.3. Let $ \phi:X^{2}\to [0, \infty) $ be a function such that
$ limj→∞1|2|jϕ(2jx,2jy)=0 $ | (3.6) |
for all $ x, y\in X $. Suppose that $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $ and
$ ‖2f(x+y2)−f(x)−f(y),υ‖≤‖ρ(f(x+y)−f(x)−f(y)),υ‖+ϕ(x,y) $ | (3.7) |
for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that
$ ‖f(x)−A(x),υ‖≤supj∈N{1|2|j+1ϕ(2j+1x,0)} $ | (3.8) |
for all $ x\in X $ and all $ \upsilon\in Y $.
Proof. Letting $ y = 0 $ in (3.6), we get
$ ‖2f(x2)−f(x),υ‖≤ϕ(x,0) $ | (3.9) |
for all $ x\in X $ and all $ \upsilon\in Y $. So
$ ‖f(x)−12f(2x),υ‖≤1|2|ϕ(2x,0) $ | (3.10) |
for all $ x\in X $ and all $ \upsilon\in Y $. Hence
$ ‖12lf(2lx)−12mf(2mx),υ‖≤max{‖12lf(2lx)−12l+1f(2l+1x),υ‖,⋯,‖12m−1f(2m−1x)−12mf(2mx),υ‖}≤max{1|2|l‖f(2lx)−12f(2l+1x),υ‖,⋯,1|2|m−1‖f(2m−1x)−12f(2mx),υ‖}≤supj∈{l,l+1,…}{1|2|j+1ϕ(2j+1x,0)} $ | (3.11) |
for all nonnegative integers $ m, l $ with $ m > l $ and for all $ x\in X $ and all $ \upsilon\in Y $. It follows from (3.11) that
$ liml,m→∞‖12lf(2lx)−12mf(2mx),υ‖=0 $ |
for all $ x\in X $ and all $ \upsilon\in Y $. Thus the sequence $ \{\frac{f(2^{n}x)}{2^{n}}\} $ is a Cauchy sequence in $ Y $. Since $ Y $ is a non-Archimedean $ 2 $-Banach space, the sequence $ \{\frac{f(2^{n}x)}{2^{n}}\} $ converges for all $ x\in X $. So one can define the mapping $ A:X\to Y $ by
$ A(x):=limn→∞f(2nx)2n $ |
for all $ x\in X $. That is,
$ limn→∞‖f(2nx)2n−A(x),υ‖=0 $ |
for all $ x\in X $ and all $ \upsilon\in Y $.
By Lemma 1.7, (3.6) and (3.7), we get
$ ‖2A(x+y2)−A(x)−A(y),υ‖=limn→∞1|2|n‖2f(2n(x+y)2)−f(2nx)−f(2ny),υ‖≤limn→∞1|2|n‖ρ(f(2n(x+y))−f(2nx)−f(2ny)),υ‖+limn→∞1|2|nϕ(2nx,2ny)=‖ρ(A(x+y)−A(x)−A(y)),υ‖ $ | (3.12) |
for all $ x, y\in X $ and all $ \upsilon\in Y $. Thus, the mapping $ A:X\to Y $ is additive by Lemma 3.1.
By Lemma 1.7 and (3.11), we have
$ ‖f(x)−A(x),υ‖=limm→∞‖f(x)−f(2mx)2m,υ‖≤supj∈N{1|2|j+1ϕ(2j+1x,0)} $ |
for all $ x\in X $ and all $ \upsilon\in Y $. Hence, we obtain (3.8), as desired.
To prove the uniqueness property of $ A $, Let $ A^{\prime}: X\to Y $ be an another additive mapping satisfying (3.8). Then we have
$ ‖A(x)−A′(x),υ‖=‖12nA(2nx)−12nA′(2nx),υ‖≤max{‖12nA(2nx)−12nf(2nx),υ‖,‖12nf(2nx)−12nA′(2nx),υ‖}≤supj∈N{1|2|n+j+1ϕ(2n+j+1x,0)}, $ |
which tends to zero as $ n\to \infty $ for all $ x\in X $ and all $ \upsilon\in Y $. By Lemma 1.3, we can conclude that $ A(x) = A^{\prime}(x) $ for all $ x\in X $. This proves the uniqueness of $ A $.
Corollary 3.4. Let $ s, \delta $ be positive real numbers with $ s > 1 $, and let $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $ and
$ ‖2f(x+y2)−f(x)−f(y),υ‖≤‖ρ(f(x+y)−f(x)−(y)),υ‖+δ(‖x‖s+‖y‖s)‖υ‖ $ | (3.13) |
for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that
$ ‖f(x)−A(x),υ‖≤|2|s|2|δ‖x‖s‖υ‖ $ | (3.14) |
for all $ x\in X $ and all $ \upsilon\in Y $.
Proof. The proof follows from Theorem 3.3 by taking $ \phi(x, y) = \delta(\|x\|^{s}+\|y\|^{s})\|\upsilon\| $ for all $ x, y\in X $ and all $ \upsilon\in Y $, as desired.
Theorem 3.5. Let $ \phi:X^{2}\to [0, \infty) $ be a function such that
$ limj→∞|2|jϕ(x2j,y2j)=0 $ | (3.15) |
for all $ x, y\in X $. Suppose that $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $ and
$ ‖2f(x+y2)−f(x)−f(y),υ‖≤‖ρ(f(x+y)−f(x)−f(y)),υ‖+ϕ(x,y) $ | (3.16) |
for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that
$ ‖f(x)−A(x),υ‖≤supj∈N{|2|jϕ(x2j,0)} $ | (3.17) |
for all $ x\in X $ and all $ \upsilon\in Y $.
Proof. It follows from (3.9) that
$ ‖f(x)−2f(x2),υ‖≤ϕ(x,0) $ | (3.18) |
for all $ x\in X $ and all $ \upsilon\in Y $. Hence
$ ‖2lf(x2l)−2mf(x2m),υ‖≤max{‖2lf(x2l)−2l+1f(x2l+1),υ‖,⋯,‖2m−1f(x2m−1)−2mf(x2m),υ‖}≤max{|2|l‖f(x2l)−2f(x2l+1),υ‖,⋯,|2|m−1‖f(x2m−1)−2f(x2m),υ‖}≤supj∈{l,l+1,…}{|2|jϕ(x2j,0)} $ | (3.19) |
for all nonnegative integers $ m, l $ with $ m > l $ and for all $ x\in X $ and all $ \upsilon\in Y $. It follows from (3.19) that
$ liml,m→∞‖2lf(x2l)−2mf(x2m),υ‖=0 $ |
for all $ x\in X $ and all $ \upsilon\in Y $. Thus the sequence $ \{2^{n}f(\frac{x}{2^{n}})\} $ is a Cauchy sequence in $ Y $. Since $ Y $ is a non-Archimedean $ 2 $-Banach space, the sequence $ \{2^{n}f(\frac{x}{2^{n}})\} $ converges for all $ x\in X $. So one can define the mapping $ A:X\to Y $ by
$ A(x):=limn→∞2nf(x2n) $ |
for all $ x\in X $. That is,
$ limn→∞‖2nf(x2n)−A(x),υ‖=0 $ |
for all $ x\in X $ and all $ \upsilon\in Y $. By Lemma 1.7 and (3.19), we have
$ ‖f(x)−A(x),υ‖=limm→∞‖f(x)−2mf(x2m),υ‖≤supj∈N{|2|jϕ(x2j,0)} $ |
for all $ x\in X $ and all $ \upsilon\in Y $. Hence, we obtain (3.17), as desired. The rest of the proof is similar to that of Theorem 3.3 and thus it is omitted.
Corollary 3.6. Let $ s, \delta $ be positive real numbers with $ s < 1 $, and let $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $ and (3.13) for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that
$ ‖f(x)−A(x),υ‖≤δ‖x‖s‖υ‖ $ | (3.20) |
for all $ x\in X $ and all $ \upsilon\in Y $.
Let $ \tilde{A}(x, y): = 2f(\frac{x+y}{2})-f(x)-f(y) $ and $ \tilde{B}(x, y): = \rho(f(x+y)-f(x)-f(y)) $ for all $ x, y\in X $. For $ x, y\in X $ and $ \upsilon\in Y $ with $ \|\tilde{A}(x, y), \upsilon\|\leq \|\tilde{B}(x, y), \upsilon\| $, we have
$ ‖˜A(x,y),υ‖−‖˜B(x,y),υ‖≤‖˜A(x,y)−˜B(x,y),υ‖. $ |
For $ x, y\in X $ and $ \upsilon\in Y $ with $ \|\tilde{A}(x, y), \upsilon\| > \|\tilde{B}(x, y), \upsilon\| $, we have
$ ‖˜A(x,y),υ‖=‖˜A(x,y)−˜B(x,y)+˜B(x,y),υ‖≤max{‖˜A(x,y)−˜B(x,y),υ‖,‖˜B(x,y),υ‖}=‖˜A(x,y)−˜B(x,y),υ‖≤‖˜A(x,y)−˜B(x,y),υ‖+‖˜B(x,y),υ‖. $ |
So we can obtain
$ ‖2f(x+y2)−f(x)−f(y),υ‖−‖ρ(f(x+y)−f(x)−f(y)),υ‖≤‖2f(x+y2)−f(x)−f(y)−ρ(f(x+y)−f(x)−f(y)),υ‖. $ |
As corollaries of Theorems 3.3 and 3.5, we obtain the Hyers-Ulam stability results for the additive $ \rho $-functional equation associated with the additive $ \rho $-functional inequality (1.5) in non-Archimedean $ 2 $-Banach spaces.
Corollary 3.7. Let $ \phi:X^{2}\to [0, \infty) $ be a function and let $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $, (3.6) and
$ ‖2f(x+y2)−f(x)−f(y)−ρ(f(x+y)−f(x)−f(y)),υ‖≤ϕ(x,y) $ | (3.21) |
for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (3.8) for all $ x\in X $ and all $ \upsilon\in Y $.
Corollary 3.8. Let $ s, \delta $ be positive real numbers with $ s > 1 $, and let $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $ and
$ ‖2f(x+y2)−f(x)−f(y)−ρ(f(x+y)−f(x)−(y)),υ‖≤δ(‖x‖s+‖y‖s)‖υ‖ $ | (3.22) |
for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (3.14) for all $ x\in X $ and all $ \upsilon\in Y $.
Corollary 3.9. Let $ \phi:X^{2}\to [0, \infty) $ be a function and let $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $, (3.15) and (3.21) for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (3.17) for all $ x\in X $ and all $ \upsilon\in Y $.
Corollary 3.10. Let $ s, \delta $ be positive real numbers with $ s < 1 $, and let $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $ and (3.22) for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (3.20) for all $ x\in X $ and all $ \upsilon\in Y $.
In this paper, we have solved the additive $ \rho $-functional inequalities:
$ ‖f(x+y)−f(x)−f(y)‖≤‖ρ(2f(x+y2)−f(x)−f(y))‖,‖2f(x+y2)−f(x)−f(y)‖≤‖ρ(f(x+y)−f(x)−f(y))‖, $ |
where $ \rho $ is a fixed non-Archimedean number with $ |\rho| < 1 $. More precisely, we have investigated the solutions of these inequalities in non-Archimedean $ 2 $-normed spaces, and have proved the Hyers-Ulam stability of these inequalities in non-Archimedean $ 2 $-normed spaces. Furthermore, we have also proved the Hyers-Ulam stability of additive $ \rho $-functional equations associated with these inequalities in non-Archimedean $ 2 $-normed spaces.
We would like to express our sincere gratitude to the anonymous referees for their helpful comments that will help to improve the quality of the manuscript.
The authors equally conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.
The authors declare that they have no competing interests.
[1] |
Weinstein RS, Graham AR, Richter LC, et al. (2009) Overview of telepathology, virtual microscopy, and whole slide imaging: prospects for the future. Hum Pathol 40: 1057-1069. doi: 10.1016/j.humpath.2009.04.006
![]() |
[2] | Al-Janabi S, Huisman A, Van Diest PJ (2012) Digital pathology: current status and future perspectives. Histopathology 61: 1-9. |
[3] |
Ghaznavi F, Evans A, Madabhushi A, et al. (2013) Digital Imaging in Pathology: Whole-Slide Imaging and Beyond. Annu Rev Pathol 8: 331-359. doi: 10.1146/annurev-pathol-011811-120902
![]() |
[4] |
Al-Janabi S, Huisman A, Nap M, et al. (2012) Whole slide images as a platform for initial diagnostics in histopathology in a medium-sized routine laboratory. J Clin Pathol 65: 1107-1111. doi: 10.1136/jclinpath-2012-200878
![]() |
[5] |
Bauer TW, Schoenfield L, Slaw RJ, et al. (2013) Validation of Whole Slide Imaging for Primary Diagnosis in Surgical Pathology. Arch Pathol Lab Med 137: 518-524. doi: 10.5858/arpa.2011-0678-OA
![]() |
[6] |
Bauer TW, Slaw RJ (2014) Validating Whole-Slide Imaging for Consultation Diagnoses in Surgical Pathology. Arch Pathol Lab Med 138: 1459-1465. doi: 10.5858/arpa.2013-0541-OA
![]() |
[7] |
Campbell WS, Lele SM, West WW, et al. (2012) Concordance between whole-slide imaging and light microscopy for routine surgical pathology. Hum Pathol 43: 1739-1744. doi: 10.1016/j.humpath.2011.12.023
![]() |
[8] |
Cornish TC, Swapp RE, Kaplan KJ (2012) Whole-slide imaging: routine pathologic diagnosis. Adv Anat Pathol 19: 152-159. doi: 10.1097/PAP.0b013e318253459e
![]() |
[9] |
Fonyad L, Krenacs T, Nagy P, et al. (2012) Validation of diagnostic accuracy using digital slides in routine histopathology. Diagn Pathol 7: 35. doi: 10.1186/1746-1596-7-35
![]() |
[10] |
Thorstenson S, Molin J, Lundström C (2014) Implementation of large-scale routine diagnostics using whole slide imaging in Sweden: Digital pathology experiences 2006-2013. J Pathol Inform 5: 14. doi: 10.4103/2153-3539.129452
![]() |
[11] |
Laszlo K, Tamas M, Gabor K, et al. (2011) Technical note on the validation of a semi-automated image analysis software application for estrogen and progesterone receptor detection in breast cancer. Diagn Pathol 6: 6. doi: 10.1186/1746-1596-6-6
![]() |
[12] | Krenacs T, Zsakovics I, Micsik T, et al. (2010) Digital microscopy - the upcoming revolution in histopathology teaching, diagnostics, research and quality assurance. Microscopy: Science, Technology, Applications and Education. pp. 965-977. |
[13] |
Fonyad L, Gerely L, Cserneky M, et al. (2010) Shifting gears higher - digital slides in graduate education - 4 years experience at Semmelweis University. Diagn Pathol 5: 73. doi: 10.1186/1746-1596-5-73
![]() |
[14] |
Pantanowitz L, Sinard JH, Henricks WH, et al. (2013) Validating Whole Slide Imaging for Diagnostic Purposes in Pathology Guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med 137: 1710-1722. doi: 10.5858/arpa.2013-0093-CP
![]() |
[15] | Swedish Society of Pathology-website. Awailabe from: http://www.svfp.se/. |
[16] | Lankshear S, Srigley J, McGowan T, et al. (2013) Standardized Synoptic Cancer Pathology Reports-So What and Who Cares? A Population-Based Satisfaction Survey of 970 Pathologists, Surgeons, and Oncologists. Arch Pathol Lab Med 137: 1599-1602. |
[17] |
Srigley JR, McGowan T, Maclean A, et al. (2009) Standardized Synoptic Cancer Pathology Reporting: A Population-Based Approach. J Surg Oncol 99: 517-524. doi: 10.1002/jso.21282
![]() |
[18] |
Gu J, Taylor CR (2014) Practicing Pathology in the Era of Big Data and Personalized Medicine. Appl Immunohistochem Mol Morphol 22: 1-9. doi: 10.1097/PAI.0000000000000022
![]() |
[19] |
Farmer ER, Gonin R, Hanna MP (1996) Discordance in the histopathologic diagnosis of melanoma and melanocytic nevi between expert pathologists. Hum Pathol 27: 528-531. doi: 10.1016/S0046-8177(96)90157-4
![]() |
[20] |
Ackerman AB (1996) Discordance among expert pathologists in diagnosis of melanocytic neoplasms. Hum Pathol 27: 1115-1116. doi: 10.1016/S0046-8177(96)90301-9
![]() |
[21] |
Cai B, Ronnett BM, Stoller M, et al. (2007) Longitudinal evaluation of Interobserver and intraobserver agreement of cervical intraepithelial neoplasia diagnosis among an experienced panel of gynecologic pathologists. Am J Surg Pathol 31: 1854-1860. doi: 10.1097/PAS.0b013e318058a544
![]() |
[22] |
Leung ST, Kaplan KJ (2009) Medicolegal aspects of telepathology. Hum Pathol 40: 1137-1142. doi: 10.1016/j.humpath.2009.01.009
![]() |
1. | El-sayed El-hady, Janusz Brzdęk, On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey II, 2022, 14, 2073-8994, 1365, 10.3390/sym14071365 | |
2. | Hemen Dutta, B. V. Senthil Kumar, S. Suresh, Non-Archimedean stabilities of multiplicative inverse µ-functional inequalities, 2024, 32, 1844-0835, 141, 10.2478/auom-2024-0008 |